Statistical analysis of actigraphy data with generalised additive models.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-05-01 Epub Date: 2023-11-16 DOI:10.1002/pst.2350
Edoardo Lisi, Juan J Abellan
{"title":"Statistical analysis of actigraphy data with generalised additive models.","authors":"Edoardo Lisi, Juan J Abellan","doi":"10.1002/pst.2350","DOIUrl":null,"url":null,"abstract":"<p><p>There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"308-324"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2350","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing interest in the use of physical activity data in clinical studies, particularly in diseases that limit mobility in patients. High-frequency data collected with digital sensors are typically summarised into actigraphy features aggregated at epoch level (e.g., by minute). The statistical analysis of such volume of data is not straightforward. The general trend is to derive metrics, capturing specific aspects of physical activity, that condense (say) a week worth of data into a single numerical value. Here we propose to analyse the entire time-series data using Generalised Additive Models (GAMs). GAMs are semi-parametric models that allow inclusion of both parametric and non-parametric terms in the linear predictor. The latter are smooth terms (e.g., splines) and, in the context of actigraphy minute-by-minute data analysis, they can be used to assess daily patterns of physical activity. This in turn can be used to better understand changes over time in longitudinal studies as well as to compare treatment groups. We illustrate the application of GAMs in two clinical studies where actigraphy data was collected: a non-drug, single-arm study in patients with amyotrophic lateral sclerosis, and a physical-activity sub-study included in a phase 2b clinical trial in patients with chronic obstructive pulmonary disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用广义加性模型对活动记录仪数据进行统计分析。
人们对在临床研究中使用身体活动数据越来越感兴趣,特别是在限制患者活动能力的疾病中。用数字传感器收集的高频数据通常总结为在历元水平(例如,按分钟)汇总的活动特征。对如此大量的数据进行统计分析并不简单。总的趋势是推导指标,捕捉身体活动的具体方面,将一周的数据浓缩成一个单一的数值。在这里,我们建议使用广义加性模型(GAMs)分析整个时间序列数据。GAMs是半参数模型,允许在线性预测器中包含参数项和非参数项。后者是平滑项(例如,样条),在活动记录仪逐分钟数据分析的背景下,它们可用于评估日常身体活动模式。这反过来又可以用来更好地理解纵向研究中随时间的变化,以及比较治疗组。我们说明了GAMs在两项临床研究中的应用,其中收集了活动图数据:一项针对肌萎缩侧索硬化症患者的非药物单臂研究,以及一项针对慢性阻塞性肺疾病患者的2b期临床试验中的身体活动亚研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
Bayesian Solutions for Assessing Differential Effects in Biomarker Positive and Negative Subgroups. Pre-Posterior Distributions in Drug Development and Their Properties. Beyond the Fragility Index. A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1