The results of randomized clinical trials (RCTs) are frequently assessed with the fragility index (FI). Although the information provided by FI may supplement the p value, this indicator presents intrinsic weaknesses and shortcomings. In this article, we establish an analysis of fragility within a broader framework so that it can reliably complement the information provided by the p value. This perspective is named the analysis of strength. We first propose a new strength index (SI), which can be adopted in normal distribution settings. This measure can be obtained for both significance and nonsignificance and is straightforward to calculate, thus presenting compelling advantages over FI, starting from the presence of a threshold. The case of time-to-event outcomes is also addressed. Then, beyond the p value, we develop the analysis of strength using likelihood ratios from Royall's statistical evidence viewpoint. A new R package is provided for performing strength calculations, and a simulation study is conducted to explore the behavior of SI and the likelihood-based indicator empirically across different settings. The newly proposed analysis of strength is applied in the assessment of the results of three recent trials involving the treatment of COVID-19.
随机临床试验(RCT)的结果经常使用脆性指数(FI)进行评估。虽然脆性指数提供的信息可以补充 p 值的不足,但这一指标存在固有的弱点和缺陷。在本文中,我们将在一个更广泛的框架内建立脆性分析,使其能够可靠地补充 p 值提供的信息。这一视角被命名为强度分析。我们首先提出了一种新的强度指数(SI),可在正态分布环境中采用。该指标既可用于显著性分析,也可用于非显著性分析,而且计算简便,因此与 FI 相比,从阈值的存在开始,就具有令人信服的优势。我们还讨论了时间到事件结果的情况。然后,除了 p 值之外,我们还从 Royall 的统计证据观点出发,使用似然比对强度进行了分析。我们提供了一个新的 R 软件包来进行强度计算,并开展了一项模拟研究来探索 SI 和基于似然比的指标在不同环境下的经验行为。新提出的强度分析被应用于评估最近三项涉及 COVID-19 治疗的试验结果。
{"title":"Beyond the Fragility Index.","authors":"Piero Quatto, Enrico Ripamonti, Donata Marasini","doi":"10.1002/pst.2452","DOIUrl":"https://doi.org/10.1002/pst.2452","url":null,"abstract":"<p><p>The results of randomized clinical trials (RCTs) are frequently assessed with the fragility index (FI). Although the information provided by FI may supplement the p value, this indicator presents intrinsic weaknesses and shortcomings. In this article, we establish an analysis of fragility within a broader framework so that it can reliably complement the information provided by the p value. This perspective is named the analysis of strength. We first propose a new strength index (SI), which can be adopted in normal distribution settings. This measure can be obtained for both significance and nonsignificance and is straightforward to calculate, thus presenting compelling advantages over FI, starting from the presence of a threshold. The case of time-to-event outcomes is also addressed. Then, beyond the p value, we develop the analysis of strength using likelihood ratios from Royall's statistical evidence viewpoint. A new R package is provided for performing strength calculations, and a simulation study is conducted to explore the behavior of SI and the likelihood-based indicator empirically across different settings. The newly proposed analysis of strength is applied in the assessment of the results of three recent trials involving the treatment of COVID-19.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precision medicine is the future of drug development, and subgroup identification plays a critical role in achieving the goal. In this paper, we propose a powerful end-to-end solution squant (available on CRAN) that explores a sequence of quantitative objectives. The method converts the original study to an artificial 1:1 randomized trial, and features a flexible objective function, a stable signature with good interpretability, and an embedded false discovery rate (FDR) control. We demonstrate its performance through simulation and provide a real data example.
{"title":"Subgroup Identification Based on Quantitative Objectives.","authors":"Yan Sun, A S Hedayat","doi":"10.1002/pst.2455","DOIUrl":"https://doi.org/10.1002/pst.2455","url":null,"abstract":"<p><p>Precision medicine is the future of drug development, and subgroup identification plays a critical role in achieving the goal. In this paper, we propose a powerful end-to-end solution squant (available on CRAN) that explores a sequence of quantitative objectives. The method converts the original study to an artificial 1:1 randomized trial, and features a flexible objective function, a stable signature with good interpretability, and an embedded false discovery rate (FDR) control. We demonstrate its performance through simulation and provide a real data example.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the "Potential biases." Within the "Potential biases" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as "potential bias parameters." We define a class of models called "potential biases model" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.
{"title":"Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.","authors":"Tomohiro Ohigashi, Kazushi Maruo, Takashi Sozu, Ryo Sawamoto, Masahiko Gosho","doi":"10.1002/pst.2453","DOIUrl":"https://doi.org/10.1002/pst.2453","url":null,"abstract":"<p><p>When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the \"Potential biases.\" Within the \"Potential biases\" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as \"potential bias parameters.\" We define a class of models called \"potential biases model\" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi
The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.
{"title":"A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology.","authors":"Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi","doi":"10.1002/pst.2454","DOIUrl":"https://doi.org/10.1002/pst.2454","url":null,"abstract":"<p><p>The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the "more is better" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.
{"title":"A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.","authors":"Yingjie Qiu, Mingyue Li","doi":"10.1002/pst.2451","DOIUrl":"https://doi.org/10.1002/pst.2451","url":null,"abstract":"<p><p>With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the \"more is better\" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann
An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.
{"title":"Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes.","authors":"Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann","doi":"10.1002/pst.2446","DOIUrl":"https://doi.org/10.1002/pst.2446","url":null,"abstract":"<p><p>An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt
In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.
{"title":"Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control.","authors":"Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt","doi":"10.1002/pst.2447","DOIUrl":"https://doi.org/10.1002/pst.2447","url":null,"abstract":"<p><p>In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
'Treatment effect measures under nonproportional hazards' by Snapinn et al. (Pharmaceutical Statistics, 22, 181-193) recently proposed some novel estimates of treatment effect for time-to-event endpoints. In this note, we clarify three points related to the proposed estimators that help to elucidate their properties. We hope that their work, and this commentary, will motivate further discussion concerning treatment effect measures that do not require the proportional hazards assumption.
{"title":"Treatment Effect Measures Under Nonproportional Hazards.","authors":"Dan Jackson, Michael Sweeting, Rose Baker","doi":"10.1002/pst.2449","DOIUrl":"https://doi.org/10.1002/pst.2449","url":null,"abstract":"<p><p>'Treatment effect measures under nonproportional hazards' by Snapinn et al. (Pharmaceutical Statistics, 22, 181-193) recently proposed some novel estimates of treatment effect for time-to-event endpoints. In this note, we clarify three points related to the proposed estimators that help to elucidate their properties. We hope that their work, and this commentary, will motivate further discussion concerning treatment effect measures that do not require the proportional hazards assumption.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Study designs incorporate interim analyses to allow for modifications to the trial design. These analyses may aid decisions regarding sample size, futility, and safety. Furthermore, they may provide evidence about potential differences between treatment arms. Bayesian response adaptive randomization (RAR) skews allocation proportions such that fewer participants are assigned to the inferior treatments. However, these allocation changes may introduce covariate imbalances. We discuss two versions of Bayesian RAR (with and without covariate adjustment for a binary covariate) for continuous outcomes analyzed using change scores and repeated measures, while considering either regression or mixed models for interim analysis modeling. Through simulation studies, we show that RAR (both versions) allocates more participants to better treatments compared to equal randomization, while reducing potential covariate imbalances. We also show that dynamic allocation using mixed models for repeated measures yields a smaller allocation proportion variance while having a similar covariate imbalance as regression models. Additionally, covariate imbalance was smallest for methods using covariate-adjusted RAR (CARA) in scenarios with small sample sizes and covariate prevalence less than 0.3. Covariate imbalance did not differ between RAR and CARA in simulations with larger sample sizes and higher covariate prevalence. We thus recommend a CARA approach for small pilot/exploratory studies for the identification of candidate treatments for further confirmatory studies.
研究设计包括中期分析,以便修改试验设计。这些分析可能有助于决定样本大小、无效性和安全性。此外,这些分析还可以为治疗臂之间的潜在差异提供证据。贝叶斯反应自适应随机化(RAR)会调整分配比例,使较少的参与者被分配到较差的治疗方案中。然而,这些分配变化可能会带来协变量不平衡。我们讨论了贝叶斯 RAR 的两个版本(对二元协变量进行协变量调整和不进行协变量调整),适用于使用变化评分和重复测量进行分析的连续结果,同时考虑使用回归模型或混合模型进行中期分析建模。通过模拟研究,我们发现与平等随机化相比,RAR(两种版本)能将更多参与者分配到更好的治疗中,同时减少潜在的协变量不平衡。我们还表明,使用重复测量混合模型进行动态分配可获得较小的分配比例方差,同时具有与回归模型类似的协变量不平衡。此外,在样本量较小且协变量流行率小于 0.3 的情况下,使用协变量调整 RAR(CARA)的方法的协变量不平衡最小。在样本量较大、共变因素流行率较高的模拟中,RAR 和 CARA 的共变因素不平衡性没有差异。因此,我们建议在小型试点/探索性研究中采用 CARA 方法,以确定候选治疗方法,供进一步的确证研究使用。
{"title":"Bayesian Response Adaptive Randomization for Randomized Clinical Trials With Continuous Outcomes: The Role of Covariate Adjustment.","authors":"Vahan Aslanyan, Trevor Pickering, Michelle Nuño, Lindsay A Renfro, Judy Pa, Wendy J Mack","doi":"10.1002/pst.2443","DOIUrl":"https://doi.org/10.1002/pst.2443","url":null,"abstract":"<p><p>Study designs incorporate interim analyses to allow for modifications to the trial design. These analyses may aid decisions regarding sample size, futility, and safety. Furthermore, they may provide evidence about potential differences between treatment arms. Bayesian response adaptive randomization (RAR) skews allocation proportions such that fewer participants are assigned to the inferior treatments. However, these allocation changes may introduce covariate imbalances. We discuss two versions of Bayesian RAR (with and without covariate adjustment for a binary covariate) for continuous outcomes analyzed using change scores and repeated measures, while considering either regression or mixed models for interim analysis modeling. Through simulation studies, we show that RAR (both versions) allocates more participants to better treatments compared to equal randomization, while reducing potential covariate imbalances. We also show that dynamic allocation using mixed models for repeated measures yields a smaller allocation proportion variance while having a similar covariate imbalance as regression models. Additionally, covariate imbalance was smallest for methods using covariate-adjusted RAR (CARA) in scenarios with small sample sizes and covariate prevalence less than 0.3. Covariate imbalance did not differ between RAR and CARA in simulations with larger sample sizes and higher covariate prevalence. We thus recommend a CARA approach for small pilot/exploratory studies for the identification of candidate treatments for further confirmatory studies.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Immunotherapies and targeted therapies have gained popularity due to their promising therapeutic effects across multiple treatment areas. The focus of early phase dose-finding clinical trials has shifted from finding the maximum tolerated dose (MTD) to identifying the optimal biological dose (OBD), which aims to balance the toxicity and efficacy outcomes, thus optimizing the risk-benefit trade-off. These trials often collect multiple pharmacokinetics (PK) outcomes to assess drug exposure, which has shown correlations with toxicity and efficacy outcomes but has not been utilized in the current dose-finding designs for OBD selection. Moreover, PK outcomes are usually available within days after initial treatment, much faster than toxicity and efficacy outcomes. To bridge this gap, we introduce the innovative model-assisted PKBOIN-12 design, which enhances BOIN12 by integrating PK information into both the dose-finding algorithm and the final OBD determination process. We further extend PKBOIN-12 to TITE-PKBOIN-12 to address the challenges of late-onset toxicity and efficacy outcomes. Simulation results demonstrate that PKBOIN-12 more effectively identifies the OBD and allocates a greater number of patients to it than BOIN12. Additionally, PKBOIN-12 decreases the probability of selecting inefficacious doses as the OBD by excluding those with low drug exposure. Comprehensive simulation studies and sensitivity analysis confirm the robustness of both PKBOIN-12 and TITE-PKBOIN-12 in various scenarios.
{"title":"PKBOIN-12: A Bayesian Optimal Interval Phase I/II Design Incorporating Pharmacokinetics Outcomes to Find the Optimal Biological Dose.","authors":"Hao Sun, Jieqi Tu","doi":"10.1002/pst.2444","DOIUrl":"https://doi.org/10.1002/pst.2444","url":null,"abstract":"<p><p>Immunotherapies and targeted therapies have gained popularity due to their promising therapeutic effects across multiple treatment areas. The focus of early phase dose-finding clinical trials has shifted from finding the maximum tolerated dose (MTD) to identifying the optimal biological dose (OBD), which aims to balance the toxicity and efficacy outcomes, thus optimizing the risk-benefit trade-off. These trials often collect multiple pharmacokinetics (PK) outcomes to assess drug exposure, which has shown correlations with toxicity and efficacy outcomes but has not been utilized in the current dose-finding designs for OBD selection. Moreover, PK outcomes are usually available within days after initial treatment, much faster than toxicity and efficacy outcomes. To bridge this gap, we introduce the innovative model-assisted PKBOIN-12 design, which enhances BOIN12 by integrating PK information into both the dose-finding algorithm and the final OBD determination process. We further extend PKBOIN-12 to TITE-PKBOIN-12 to address the challenges of late-onset toxicity and efficacy outcomes. Simulation results demonstrate that PKBOIN-12 more effectively identifies the OBD and allocates a greater number of patients to it than BOIN12. Additionally, PKBOIN-12 decreases the probability of selecting inefficacious doses as the OBD by excluding those with low drug exposure. Comprehensive simulation studies and sensitivity analysis confirm the robustness of both PKBOIN-12 and TITE-PKBOIN-12 in various scenarios.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}