首页 > 最新文献

Pharmaceutical Statistics最新文献

英文 中文
Beyond the Fragility Index. 超越脆弱性指数。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-21 DOI: 10.1002/pst.2452
Piero Quatto, Enrico Ripamonti, Donata Marasini

The results of randomized clinical trials (RCTs) are frequently assessed with the fragility index (FI). Although the information provided by FI may supplement the p value, this indicator presents intrinsic weaknesses and shortcomings. In this article, we establish an analysis of fragility within a broader framework so that it can reliably complement the information provided by the p value. This perspective is named the analysis of strength. We first propose a new strength index (SI), which can be adopted in normal distribution settings. This measure can be obtained for both significance and nonsignificance and is straightforward to calculate, thus presenting compelling advantages over FI, starting from the presence of a threshold. The case of time-to-event outcomes is also addressed. Then, beyond the p value, we develop the analysis of strength using likelihood ratios from Royall's statistical evidence viewpoint. A new R package is provided for performing strength calculations, and a simulation study is conducted to explore the behavior of SI and the likelihood-based indicator empirically across different settings. The newly proposed analysis of strength is applied in the assessment of the results of three recent trials involving the treatment of COVID-19.

随机临床试验(RCT)的结果经常使用脆性指数(FI)进行评估。虽然脆性指数提供的信息可以补充 p 值的不足,但这一指标存在固有的弱点和缺陷。在本文中,我们将在一个更广泛的框架内建立脆性分析,使其能够可靠地补充 p 值提供的信息。这一视角被命名为强度分析。我们首先提出了一种新的强度指数(SI),可在正态分布环境中采用。该指标既可用于显著性分析,也可用于非显著性分析,而且计算简便,因此与 FI 相比,从阈值的存在开始,就具有令人信服的优势。我们还讨论了时间到事件结果的情况。然后,除了 p 值之外,我们还从 Royall 的统计证据观点出发,使用似然比对强度进行了分析。我们提供了一个新的 R 软件包来进行强度计算,并开展了一项模拟研究来探索 SI 和基于似然比的指标在不同环境下的经验行为。新提出的强度分析被应用于评估最近三项涉及 COVID-19 治疗的试验结果。
{"title":"Beyond the Fragility Index.","authors":"Piero Quatto, Enrico Ripamonti, Donata Marasini","doi":"10.1002/pst.2452","DOIUrl":"https://doi.org/10.1002/pst.2452","url":null,"abstract":"<p><p>The results of randomized clinical trials (RCTs) are frequently assessed with the fragility index (FI). Although the information provided by FI may supplement the p value, this indicator presents intrinsic weaknesses and shortcomings. In this article, we establish an analysis of fragility within a broader framework so that it can reliably complement the information provided by the p value. This perspective is named the analysis of strength. We first propose a new strength index (SI), which can be adopted in normal distribution settings. This measure can be obtained for both significance and nonsignificance and is straightforward to calculate, thus presenting compelling advantages over FI, starting from the presence of a threshold. The case of time-to-event outcomes is also addressed. Then, beyond the p value, we develop the analysis of strength using likelihood ratios from Royall's statistical evidence viewpoint. A new R package is provided for performing strength calculations, and a simulation study is conducted to explore the behavior of SI and the likelihood-based indicator empirically across different settings. The newly proposed analysis of strength is applied in the assessment of the results of three recent trials involving the treatment of COVID-19.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subgroup Identification Based on Quantitative Objectives. 基于量化目标的分组识别。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-17 DOI: 10.1002/pst.2455
Yan Sun, A S Hedayat

Precision medicine is the future of drug development, and subgroup identification plays a critical role in achieving the goal. In this paper, we propose a powerful end-to-end solution squant (available on CRAN) that explores a sequence of quantitative objectives. The method converts the original study to an artificial 1:1 randomized trial, and features a flexible objective function, a stable signature with good interpretability, and an embedded false discovery rate (FDR) control. We demonstrate its performance through simulation and provide a real data example.

精准医疗是药物开发的未来,而亚组识别在实现这一目标的过程中起着至关重要的作用。在本文中,我们提出了一种功能强大的端到端解决方案 squant(可在 CRAN 上获取),用于探索一系列定量目标。该方法将原始研究转换为人工 1:1 随机试验,具有灵活的目标函数、可解释性良好的稳定特征以及嵌入式误诊率 (FDR) 控制。我们通过模拟演示了该方法的性能,并提供了一个真实数据示例。
{"title":"Subgroup Identification Based on Quantitative Objectives.","authors":"Yan Sun, A S Hedayat","doi":"10.1002/pst.2455","DOIUrl":"https://doi.org/10.1002/pst.2455","url":null,"abstract":"<p><p>Precision medicine is the future of drug development, and subgroup identification plays a critical role in achieving the goal. In this paper, we propose a powerful end-to-end solution squant (available on CRAN) that explores a sequence of quantitative objectives. The method converts the original study to an artificial 1:1 randomized trial, and features a flexible objective function, a stable signature with good interpretability, and an embedded false discovery rate (FDR) control. We demonstrate its performance through simulation and provide a real data example.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data. 用于动态借用多个历史控制数据的贝叶斯收缩先验潜在偏差模型。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-17 DOI: 10.1002/pst.2453
Tomohiro Ohigashi, Kazushi Maruo, Takashi Sozu, Ryo Sawamoto, Masahiko Gosho

When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the "Potential biases." Within the "Potential biases" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as "potential bias parameters." We define a class of models called "potential biases model" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.

当有多个历史对照时,有必要考虑当前对照与历史对照之间的冲突以及历史对照之间的关系。关于当前控制和历史控制的相关参数之间关系的假设之一被称为 "潜在偏差"。在 "潜在偏差 "假设中,当前控制与每个历史控制的相关参数之间的差异被定义为 "潜在偏差参数"。我们定义了一类称为 "潜在偏差模型 "的模型,其中包含几种现有的方法,包括相称先验法。潜在偏差模型通过将潜在偏差参数缩减为零来纳入同质历史对照。在有多种历史控制的情况下,提出了一种使用马蹄先验的方法。不过,也有其他各种收缩先验。在本研究中,我们提出了在潜在偏倚模型中应用尖峰-平板先验、狄利克特-拉普拉斯先验和尖峰-平板拉索先验的方法。我们进行了模拟研究,并分析了临床试验实例,以比较建议方法和现有方法的性能。在没有异质历史对照的情况下,马蹄先验和其他三种先验能最有效地利用历史对照,而在有少量历史对照的情况下,则能降低异质历史对照的影响。在这四种先验中,尖峰和平板先验在异质历史控制方面的表现最好。
{"title":"Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.","authors":"Tomohiro Ohigashi, Kazushi Maruo, Takashi Sozu, Ryo Sawamoto, Masahiko Gosho","doi":"10.1002/pst.2453","DOIUrl":"https://doi.org/10.1002/pst.2453","url":null,"abstract":"<p><p>When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the \"Potential biases.\" Within the \"Potential biases\" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as \"potential bias parameters.\" We define a class of models called \"potential biases model\" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology. 基于模型的试验设计,考虑到药物动力学暴露的随机方案,用于肿瘤学剂量优化
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-17 DOI: 10.1002/pst.2454
Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi

The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.

新型抗癌药物的肿瘤剂量探索试验的主要目的已经从确定最大耐受剂量转变为确定最佳剂量(OD),该剂量对后续临床试验中的受试者具有耐受性和治疗益处。2022 年,FDA 肿瘤卓越中心启动了 Optimus 项目,以改革肿瘤药物开发中的剂量优化和剂量选择模式,并发布了一份指南草案。该指南建议,剂量探索试验应包括多剂量的随机剂量反应队列,并在安全性和有效性数据之外纳入药代动力学(PK)信息,以选择OD。此外,PK 信息可以快速替代疗效数据来预测最小有效剂量并决定剂量分配。本文提出了一种基于肿瘤学 PK 结果的随机化方案的剂量优化模型试验设计。模拟研究表明,与其他设计相比,在不同的现实环境中,所提出的设计在OD选择的正确率和分配到OD的患者平均人数方面具有优势。
{"title":"A Model-Based Trial Design With a Randomization Scheme Considering Pharmacokinetics Exposure for Dose Optimization in Oncology.","authors":"Jun Zhang, Kentaro Takeda, Masato Takeuchi, Kanji Komatsu, Jing Zhu, Yusuke Yamaguchi","doi":"10.1002/pst.2454","DOIUrl":"https://doi.org/10.1002/pst.2454","url":null,"abstract":"<p><p>The primary purpose of an oncology dose-finding trial for novel anticancer agents has been shifting from determining the maximum tolerated dose to identifying an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. In 2022, the FDA Oncology Center of Excellence initiated Project Optimus to reform the paradigm of dose optimization and dose selection in oncology drug development and issued a draft guidance. The guidance suggests that dose-finding trials include randomized dose-response cohorts of multiple doses and incorporate information on pharmacokinetics (PK) in addition to safety and efficacy data to select the OD. Furthermore, PK information could be a quick alternative to efficacy data to predict the minimum efficacious dose and decide the dose assignment. This article proposes a model-based trial design for dose optimization with a randomization scheme based on PK outcomes in oncology. A simulation study shows that the proposed design has advantages compared to the other designs in the percentage of correct OD selection and the average number of patients assigned to OD in various realistic settings.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials. 基于贝叶斯动态模型的自适应设计,用于 I/II 期临床试验中的肿瘤剂量优化。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-10 DOI: 10.1002/pst.2451
Yingjie Qiu, Mingyue Li

With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the "more is better" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.

随着靶向疗法、免疫疗法和抗体药物共轭物(ADC)的发展,人们越来越关注几十年前针对化疗提出的 "多多益善 "模式,这促使美国食品和药物管理局(FDA)启动了优化项目(Project Optimus),以改革肿瘤药物开发中的剂量优化和选择。对于早期阶段的肿瘤试验,鉴于稀疏数据带来的高变异性和参数模型规格的僵化,我们使用贝叶斯动态模型来借用各剂量的信息,而仅有模糊的阶次约束。我们提出的自适应设计同时结合毒性和疗效结果,在 I/II 期临床试验中选择最佳剂量 (OD),利用贝叶斯模型平均法解决剂量-反应关系的不确定性,提高设计的稳健性。此外,我们还扩展了拟议设计,以处理延迟毒性和疗效结果。我们进行了广泛的模拟研究,以评估拟议方法在各种实际情况下的运行特性。结果表明,建议的设计具有理想的运行特性。我们还提供了一个试验示例,演示如何实际应用所提出的设计。
{"title":"A Bayesian Dynamic Model-Based Adaptive Design for Oncology Dose Optimization in Phase I/II Clinical Trials.","authors":"Yingjie Qiu, Mingyue Li","doi":"10.1002/pst.2451","DOIUrl":"https://doi.org/10.1002/pst.2451","url":null,"abstract":"<p><p>With the development of targeted therapy, immunotherapy, and antibody-drug conjugates (ADCs), there is growing concern over the \"more is better\" paradigm developed decades ago for chemotherapy, prompting the US Food and Drug Administration (FDA) to initiate Project Optimus to reform dose optimization and selection in oncology drug development. For early-phase oncology trials, given the high variability from sparse data and the rigidity of parametric model specifications, we use Bayesian dynamic models to borrow information across doses with only vague order constraints. Our proposed adaptive design simultaneously incorporates toxicity and efficacy outcomes to select the optimal dose (OD) in Phase I/II clinical trials, utilizing Bayesian model averaging to address the uncertainty of dose-response relationships and enhance the robustness of the design. Additionally, we extend the proposed design to handle delayed toxicity and efficacy outcomes. We conduct extensive simulation studies to evaluate the operating characteristics of the proposed method under various practical scenarios. The results demonstrate that the proposed designs have desirable operating characteristics. A trial example is presented to demonstrate the practical implementation of the proposed designs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes. 优化 2 型糖尿病 3 期临床试验的样本量确定。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-30 DOI: 10.1002/pst.2446
Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann

An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.

对受试者水平差异的知情估计是准确估计临床试验所需样本量的关键因素。在计划阶段对提交给美国食品药品管理局的已完成的成人 2 型糖尿病研究进行评估,以确定方差估计的准确性,从而为未来研究的样本量要求提供启示。从美国食品药品管理局(FDA)的新药申请数据库中,我们获得了主要终点--糖化血红蛋白(HbA1c)从基线到6个月的变化--的受试者水平方差估计值。此外,我们还使用了另外九项研究来考察具有临床意义的协变量对残差标准差和样本量再估计的影响。我们的分析表明,缩小样本量不会影响成人 2 型糖尿病药物试验疗效结果的有效性。这一发现对未来涉及成人 2 型糖尿病人群的研究具有重要意义,包括有可能缩短招募期和提高结果的及时性。此外,我们的发现还可用于未来内分泌学临床试验的设计。
{"title":"Optimizing Sample Size Determinations for Phase 3 Clinical Trials in Type 2 Diabetes.","authors":"Alexander C Cambon, James Travis, Liping Sun, Jada Idokogi, Anna Kettermann","doi":"10.1002/pst.2446","DOIUrl":"https://doi.org/10.1002/pst.2446","url":null,"abstract":"<p><p>An informed estimate of subject-level variance is a key determinate for accurate estimation of the required sample size for clinical trials. Evaluating completed adult Type 2 diabetes studies submitted to the FDA for accuracy of the variance estimate at the planning stage provides insights to inform the sample size requirements for future studies. From the U.S. Food and Drug Administration (FDA) database of new drug applications containing 14,106 subjects from 26 phase 3 randomized studies submitted to the FDA in support of drug approvals in adult type 2 diabetes studies reviewed between 2013 and 2017, we obtained estimates of subject-level variance for the primary endpoint-change in glycated hemoglobin (HbA1c) from baseline to 6 months. In addition, we used nine additional studies to examine the impact of clinically meaningful covariates on residual standard deviation and sample size re-estimation. Our analyses show that reduced sample sizes can be used without interfering with the validity of efficacy results for adult type 2 diabetes drug trials. This finding has implications for future research involving the adult type 2 diabetes population, including the potential to reduce recruitment period length and improve the timeliness of results. Furthermore, our findings could be utilized in the design of future endocrinology clinical trials.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control. 过度分散泊松数据的预测区间及其在医疗和临床前质量控制中的应用
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-30 DOI: 10.1002/pst.2447
Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt

In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.

在临床前和医疗质量控制中,利用历史控制数据来评估监测过程的稳定性或验证当前观察结果是很有意义的。一般来说,这是通过应用历史控制限(HCL)来实现的,以图形方式显示在控制图中。在许多应用中,HCL 被应用于计数数据,例如回复菌落数(艾姆斯检测法)或每位多发性硬化症患者的复发次数。计数数据可能过度分散,可能严重右偏,群集大小或其他基线量(例如,每个对照组的培养皿数量或每个患者的监测时间长度不同)也可能不同。基于准泊松假设或负二项分布,我们提出了用作 HCL 的过度分散计数数据的预测区间。可变基线量可通过偏移量来解释。此外,我们还提供了一种自举校准算法,可考虑倾斜分布并实现等尾概率。通过对八种不同的 HCL 计算方法的覆盖概率进行全面的蒙特卡洛模拟评估发现,自举校准预测区间对 1 类误差的控制效果最佳。控制图中传统使用的启发式方法(如 Shewhart c- 或 u- 图表中的限值或平均值 ± 2 SD)无法控制预先指定的覆盖概率。根据艾姆斯试验的数据和多发性硬化症患者的复发次数,展示了 HCL 的应用。建议的预测区间和自举校准算法可通过 R 软件包 predint 公开获取。
{"title":"Prediction Intervals for Overdispersed Poisson Data and Their Application in Medical and Pre-Clinical Quality Control.","authors":"Max Menssen, Martina Dammann, Firas Fneish, David Ellenberger, Frank Schaarschmidt","doi":"10.1002/pst.2447","DOIUrl":"https://doi.org/10.1002/pst.2447","url":null,"abstract":"<p><p>In pre-clinical and medical quality control, it is of interest to assess the stability of the process under monitoring or to validate a current observation using historical control data. Classically, this is done by the application of historical control limits (HCL) graphically displayed in control charts. In many applications, HCL are applied to count data, for example, the number of revertant colonies (Ames assay) or the number of relapses per multiple sclerosis patient. Count data may be overdispersed, can be heavily right-skewed and clusters may differ in cluster size or other baseline quantities (e.g., number of petri dishes per control group or different length of monitoring times per patient). Based on the quasi-Poisson assumption or the negative-binomial distribution, we propose prediction intervals for overdispersed count data to be used as HCL. Variable baseline quantities are accounted for by offsets. Furthermore, we provide a bootstrap calibration algorithm that accounts for the skewed distribution and achieves equal tail probabilities. Comprehensive Monte-Carlo simulations assessing the coverage probabilities of eight different methods for HCL calculation reveal, that the bootstrap calibrated prediction intervals control the type-1-error best. Heuristics traditionally used in control charts (e.g., the limits in Shewhart c- or u-charts or the mean ± 2 SD) fail to control a pre-specified coverage probability. The application of HCL is demonstrated based on data from the Ames assay and for numbers of relapses of multiple sclerosis patients. The proposed prediction intervals and the algorithm for bootstrap calibration are publicly available via the R package predint.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Treatment Effect Measures Under Nonproportional Hazards. 非比例危害下的治疗效果测量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-27 DOI: 10.1002/pst.2449
Dan Jackson, Michael Sweeting, Rose Baker

'Treatment effect measures under nonproportional hazards' by Snapinn et al. (Pharmaceutical Statistics, 22, 181-193) recently proposed some novel estimates of treatment effect for time-to-event endpoints. In this note, we clarify three points related to the proposed estimators that help to elucidate their properties. We hope that their work, and this commentary, will motivate further discussion concerning treatment effect measures that do not require the proportional hazards assumption.

Snapinn 等人的 "非比例危险下的治疗效果测量"(《医药统计》,22,181-193)最近提出了一些新的时间到事件终点治疗效果估计值。在本说明中,我们将阐明与所提估计值有关的三点,以帮助阐明其特性。我们希望他们的工作和这篇评论能激励人们进一步讨论不需要比例危险假设的治疗效果测量方法。
{"title":"Treatment Effect Measures Under Nonproportional Hazards.","authors":"Dan Jackson, Michael Sweeting, Rose Baker","doi":"10.1002/pst.2449","DOIUrl":"https://doi.org/10.1002/pst.2449","url":null,"abstract":"<p><p>'Treatment effect measures under nonproportional hazards' by Snapinn et al. (Pharmaceutical Statistics, 22, 181-193) recently proposed some novel estimates of treatment effect for time-to-event endpoints. In this note, we clarify three points related to the proposed estimators that help to elucidate their properties. We hope that their work, and this commentary, will motivate further discussion concerning treatment effect measures that do not require the proportional hazards assumption.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian Response Adaptive Randomization for Randomized Clinical Trials With Continuous Outcomes: The Role of Covariate Adjustment. 连续结果随机临床试验的贝叶斯反应自适应随机化:协变量调整的作用》。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-24 DOI: 10.1002/pst.2443
Vahan Aslanyan, Trevor Pickering, Michelle Nuño, Lindsay A Renfro, Judy Pa, Wendy J Mack

Study designs incorporate interim analyses to allow for modifications to the trial design. These analyses may aid decisions regarding sample size, futility, and safety. Furthermore, they may provide evidence about potential differences between treatment arms. Bayesian response adaptive randomization (RAR) skews allocation proportions such that fewer participants are assigned to the inferior treatments. However, these allocation changes may introduce covariate imbalances. We discuss two versions of Bayesian RAR (with and without covariate adjustment for a binary covariate) for continuous outcomes analyzed using change scores and repeated measures, while considering either regression or mixed models for interim analysis modeling. Through simulation studies, we show that RAR (both versions) allocates more participants to better treatments compared to equal randomization, while reducing potential covariate imbalances. We also show that dynamic allocation using mixed models for repeated measures yields a smaller allocation proportion variance while having a similar covariate imbalance as regression models. Additionally, covariate imbalance was smallest for methods using covariate-adjusted RAR (CARA) in scenarios with small sample sizes and covariate prevalence less than 0.3. Covariate imbalance did not differ between RAR and CARA in simulations with larger sample sizes and higher covariate prevalence. We thus recommend a CARA approach for small pilot/exploratory studies for the identification of candidate treatments for further confirmatory studies.

研究设计包括中期分析,以便修改试验设计。这些分析可能有助于决定样本大小、无效性和安全性。此外,这些分析还可以为治疗臂之间的潜在差异提供证据。贝叶斯反应自适应随机化(RAR)会调整分配比例,使较少的参与者被分配到较差的治疗方案中。然而,这些分配变化可能会带来协变量不平衡。我们讨论了贝叶斯 RAR 的两个版本(对二元协变量进行协变量调整和不进行协变量调整),适用于使用变化评分和重复测量进行分析的连续结果,同时考虑使用回归模型或混合模型进行中期分析建模。通过模拟研究,我们发现与平等随机化相比,RAR(两种版本)能将更多参与者分配到更好的治疗中,同时减少潜在的协变量不平衡。我们还表明,使用重复测量混合模型进行动态分配可获得较小的分配比例方差,同时具有与回归模型类似的协变量不平衡。此外,在样本量较小且协变量流行率小于 0.3 的情况下,使用协变量调整 RAR(CARA)的方法的协变量不平衡最小。在样本量较大、共变因素流行率较高的模拟中,RAR 和 CARA 的共变因素不平衡性没有差异。因此,我们建议在小型试点/探索性研究中采用 CARA 方法,以确定候选治疗方法,供进一步的确证研究使用。
{"title":"Bayesian Response Adaptive Randomization for Randomized Clinical Trials With Continuous Outcomes: The Role of Covariate Adjustment.","authors":"Vahan Aslanyan, Trevor Pickering, Michelle Nuño, Lindsay A Renfro, Judy Pa, Wendy J Mack","doi":"10.1002/pst.2443","DOIUrl":"https://doi.org/10.1002/pst.2443","url":null,"abstract":"<p><p>Study designs incorporate interim analyses to allow for modifications to the trial design. These analyses may aid decisions regarding sample size, futility, and safety. Furthermore, they may provide evidence about potential differences between treatment arms. Bayesian response adaptive randomization (RAR) skews allocation proportions such that fewer participants are assigned to the inferior treatments. However, these allocation changes may introduce covariate imbalances. We discuss two versions of Bayesian RAR (with and without covariate adjustment for a binary covariate) for continuous outcomes analyzed using change scores and repeated measures, while considering either regression or mixed models for interim analysis modeling. Through simulation studies, we show that RAR (both versions) allocates more participants to better treatments compared to equal randomization, while reducing potential covariate imbalances. We also show that dynamic allocation using mixed models for repeated measures yields a smaller allocation proportion variance while having a similar covariate imbalance as regression models. Additionally, covariate imbalance was smallest for methods using covariate-adjusted RAR (CARA) in scenarios with small sample sizes and covariate prevalence less than 0.3. Covariate imbalance did not differ between RAR and CARA in simulations with larger sample sizes and higher covariate prevalence. We thus recommend a CARA approach for small pilot/exploratory studies for the identification of candidate treatments for further confirmatory studies.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PKBOIN-12: A Bayesian Optimal Interval Phase I/II Design Incorporating Pharmacokinetics Outcomes to Find the Optimal Biological Dose. PKBOIN-12:贝叶斯最优间隔 I/II 期设计,纳入药代动力学结果以找到最佳生物剂量。
IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-24 DOI: 10.1002/pst.2444
Hao Sun, Jieqi Tu

Immunotherapies and targeted therapies have gained popularity due to their promising therapeutic effects across multiple treatment areas. The focus of early phase dose-finding clinical trials has shifted from finding the maximum tolerated dose (MTD) to identifying the optimal biological dose (OBD), which aims to balance the toxicity and efficacy outcomes, thus optimizing the risk-benefit trade-off. These trials often collect multiple pharmacokinetics (PK) outcomes to assess drug exposure, which has shown correlations with toxicity and efficacy outcomes but has not been utilized in the current dose-finding designs for OBD selection. Moreover, PK outcomes are usually available within days after initial treatment, much faster than toxicity and efficacy outcomes. To bridge this gap, we introduce the innovative model-assisted PKBOIN-12 design, which enhances BOIN12 by integrating PK information into both the dose-finding algorithm and the final OBD determination process. We further extend PKBOIN-12 to TITE-PKBOIN-12 to address the challenges of late-onset toxicity and efficacy outcomes. Simulation results demonstrate that PKBOIN-12 more effectively identifies the OBD and allocates a greater number of patients to it than BOIN12. Additionally, PKBOIN-12 decreases the probability of selecting inefficacious doses as the OBD by excluding those with low drug exposure. Comprehensive simulation studies and sensitivity analysis confirm the robustness of both PKBOIN-12 and TITE-PKBOIN-12 in various scenarios.

免疫疗法和靶向疗法在多个治疗领域都具有良好的治疗效果,因此受到了越来越多人的青睐。早期剂量探索临床试验的重点已从寻找最大耐受剂量(MTD)转向确定最佳生物剂量(OBD),其目的是平衡毒性和疗效结果,从而优化风险-效益权衡。这些试验通常会收集多种药代动力学(PK)结果来评估药物暴露,PK 结果与毒性和疗效结果之间存在相关性,但在目前的 OBD 选择剂量探索设计中尚未得到利用。此外,PK 结果通常可在初始治疗后几天内获得,比毒性和疗效结果快得多。为了弥补这一差距,我们引入了创新的模型辅助 PKBOIN-12 设计,通过将 PK 信息整合到剂量查找算法和最终的 OBD 确定过程中,增强了 BOIN12 的功能。我们进一步将 PKBOIN-12 扩展为 TITE-PKBOIN-12,以应对晚发毒性和疗效结果的挑战。模拟结果表明,与 BOIN12 相比,PKBOIN-12 能更有效地确定 OBD 并将更多患者分配到 OBD。此外,PKBOIN-12 还能排除药物暴露量低的患者,从而降低选择低效剂量作为 OBD 的概率。全面的模拟研究和敏感性分析证实了 PKBOIN-12 和 TITE-PKBOIN-12 在各种情况下的稳健性。
{"title":"PKBOIN-12: A Bayesian Optimal Interval Phase I/II Design Incorporating Pharmacokinetics Outcomes to Find the Optimal Biological Dose.","authors":"Hao Sun, Jieqi Tu","doi":"10.1002/pst.2444","DOIUrl":"https://doi.org/10.1002/pst.2444","url":null,"abstract":"<p><p>Immunotherapies and targeted therapies have gained popularity due to their promising therapeutic effects across multiple treatment areas. The focus of early phase dose-finding clinical trials has shifted from finding the maximum tolerated dose (MTD) to identifying the optimal biological dose (OBD), which aims to balance the toxicity and efficacy outcomes, thus optimizing the risk-benefit trade-off. These trials often collect multiple pharmacokinetics (PK) outcomes to assess drug exposure, which has shown correlations with toxicity and efficacy outcomes but has not been utilized in the current dose-finding designs for OBD selection. Moreover, PK outcomes are usually available within days after initial treatment, much faster than toxicity and efficacy outcomes. To bridge this gap, we introduce the innovative model-assisted PKBOIN-12 design, which enhances BOIN12 by integrating PK information into both the dose-finding algorithm and the final OBD determination process. We further extend PKBOIN-12 to TITE-PKBOIN-12 to address the challenges of late-onset toxicity and efficacy outcomes. Simulation results demonstrate that PKBOIN-12 more effectively identifies the OBD and allocates a greater number of patients to it than BOIN12. Additionally, PKBOIN-12 decreases the probability of selecting inefficacious doses as the OBD by excluding those with low drug exposure. Comprehensive simulation studies and sensitivity analysis confirm the robustness of both PKBOIN-12 and TITE-PKBOIN-12 in various scenarios.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Pharmaceutical Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1