A dynamic biointerface controls mussel adhesion

IF 44.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Pub Date : 2023-11-16 DOI:10.1126/science.adl2002
Guoqing Pan, Bin Li
{"title":"A dynamic biointerface controls mussel adhesion","authors":"Guoqing Pan,&nbsp;Bin Li","doi":"10.1126/science.adl2002","DOIUrl":null,"url":null,"abstract":"<div >Marine mussel adhesion to surfaces has been extensively studied owing to its potential as an adhesive in wet conditions (<i>1-3</i>). However, most studies focus on the chemical binding mechanism of mussel byssus, an adhesive secreta, to surfaces (<i>4</i>), whereas the connections between living tissue and the byssus have rarely been explored. Although strong adherence of mussels on rocky reefs is necessary for survival, these sessile organisms can liberate themselves from anchored substrates to regain mobility when encountering predators or harsh environments (<i>5</i>). How do mussels ensure strong and compact connection to byssus yet quickly release it when needed? On page 829 of this issue, Sivasundarampillai <i>et al.</i> (<i>6</i>) reveal that the dynamic biointerface between mussel tissue and byssus plays an important role in Mytilus mussels. Their finding could be informative about how nonliving materials can be dynamically interfaced with living tissue, as in the case of detachable biosensors and medical implants.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"382 6672","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adl2002","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine mussel adhesion to surfaces has been extensively studied owing to its potential as an adhesive in wet conditions (1-3). However, most studies focus on the chemical binding mechanism of mussel byssus, an adhesive secreta, to surfaces (4), whereas the connections between living tissue and the byssus have rarely been explored. Although strong adherence of mussels on rocky reefs is necessary for survival, these sessile organisms can liberate themselves from anchored substrates to regain mobility when encountering predators or harsh environments (5). How do mussels ensure strong and compact connection to byssus yet quickly release it when needed? On page 829 of this issue, Sivasundarampillai et al. (6) reveal that the dynamic biointerface between mussel tissue and byssus plays an important role in Mytilus mussels. Their finding could be informative about how nonliving materials can be dynamically interfaced with living tissue, as in the case of detachable biosensors and medical implants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态生物界面控制贻贝粘附。
贻贝附着的分泌物界面揭示了无生命物质是如何与组织相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
期刊最新文献
Sequence modeling and design from molecular to genome scale with Evo Chemical genetic approaches to dissect microbiota mechanisms in health and disease A glutamine metabolic switch supports erythropoiesis SPL13 controls a root apical meristem phase change by triggering oriented cell divisions A sample of the Moon's far side retrieved by Chang'e-6 contains 2.83-billion-year-old basalt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1