This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The article takes a neuroscience perspective, identifying where neuroevolution can lead to insights about the structure, function, and developmental and evolutionary origins of biological neural circuitry that can be studied in further neuroscience experiments. It proposes optimization under environmental constraints as a unifying theme and suggests the evolution of language as a grand challenge whose time may have come.
{"title":"Neuroevolution insights into biological neural computation","authors":"Risto Miikkulainen","doi":"","DOIUrl":"","url":null,"abstract":"<div >This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The article takes a neuroscience perspective, identifying where neuroevolution can lead to insights about the structure, function, and developmental and evolutionary origins of biological neural circuitry that can be studied in further neuroscience experiments. It proposes optimization under environmental constraints as a unifying theme and suggests the evolution of language as a grand challenge whose time may have come.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bastienne Zaremba, Amir Fallahshahroudi, Céline Schneider, Julia Schmidt, Ioannis Sarropoulos, Evgeny Leushkin, Bianka Berki, Enya Van Poucke, Per Jensen, Rodrigo Senovilla-Ganzo, Francisca Hervas-Sotomayor, Nils Trost, Francesco Lamanna, Mari Sepp, Fernando García-Moreno, Henrik Kaessmann
Innovations in the pallium likely facilitated the evolution of advanced cognitive abilities in birds. We therefore scrutinized its cellular composition and evolution using cell type atlases from chicken, mouse, and nonavian reptiles. We found that the avian pallium shares most inhibitory neuron types with other amniotes. Whereas excitatory neuron types in amniote hippocampal regions show evolutionary conservation, those in other pallial regions have diverged. Neurons in the avian mesopallium display gene expression profiles akin to the mammalian claustrum and deep cortical layers, while certain nidopallial cell types resemble neurons in the piriform cortex. Lastly, we observed substantial gene expression convergence between the dorsally located hyperpallium and ventrally located nidopallium during late development, suggesting that topological location does not always dictate gene expression programs determining functional properties in the adult avian pallium.
{"title":"Developmental origins and evolution of pallial cell types and structures in birds","authors":"Bastienne Zaremba, Amir Fallahshahroudi, Céline Schneider, Julia Schmidt, Ioannis Sarropoulos, Evgeny Leushkin, Bianka Berki, Enya Van Poucke, Per Jensen, Rodrigo Senovilla-Ganzo, Francisca Hervas-Sotomayor, Nils Trost, Francesco Lamanna, Mari Sepp, Fernando García-Moreno, Henrik Kaessmann","doi":"","DOIUrl":"","url":null,"abstract":"<div >Innovations in the pallium likely facilitated the evolution of advanced cognitive abilities in birds. We therefore scrutinized its cellular composition and evolution using cell type atlases from chicken, mouse, and nonavian reptiles. We found that the avian pallium shares most inhibitory neuron types with other amniotes. Whereas excitatory neuron types in amniote hippocampal regions show evolutionary conservation, those in other pallial regions have diverged. Neurons in the avian mesopallium display gene expression profiles akin to the mammalian claustrum and deep cortical layers, while certain nidopallial cell types resemble neurons in the piriform cortex. Lastly, we observed substantial gene expression convergence between the dorsally located hyperpallium and ventrally located nidopallium during late development, suggesting that topological location does not always dictate gene expression programs determining functional properties in the adult avian pallium.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siyuan Du, Rachael C. Kretsch, Jacob Parres-Gold, Elisa Pieri, Vinícius Wilian D. Cruzeiro, Mingning Zhu, Margaux M. Pinney, Filip Yabukarski, Jason P. Schwans, Todd J. Martínez, Daniel Herschlag
Enzymes exist in ensembles of states that encode the energetics underlying their catalysis. Conformational ensembles built from 1231 structures of 17 serine proteases revealed atomic-level changes across their reaction states. By comparing the enzymatic and solution reaction, we identified molecular features that provide catalysis and quantified their energetic contributions to catalysis. Serine proteases precisely position their reactants in destabilized conformers, creating a downhill energetic gradient that selectively favors the motions required for reaction while limiting off-pathway conformational states. The same catalytic features have repeatedly evolved in proteases and additional enzymes across multiple distinct structural folds. Our ensemble-function analyses revealed previously unknown catalytic features, provided quantitative models based on simple physical and chemical principles, and identified motifs recurrent in nature that may inspire enzyme design.
{"title":"Conformational ensembles reveal the origins of serine protease catalysis","authors":"Siyuan Du, Rachael C. Kretsch, Jacob Parres-Gold, Elisa Pieri, Vinícius Wilian D. Cruzeiro, Mingning Zhu, Margaux M. Pinney, Filip Yabukarski, Jason P. Schwans, Todd J. Martínez, Daniel Herschlag","doi":"","DOIUrl":"","url":null,"abstract":"<div >Enzymes exist in ensembles of states that encode the energetics underlying their catalysis. Conformational ensembles built from 1231 structures of 17 serine proteases revealed atomic-level changes across their reaction states. By comparing the enzymatic and solution reaction, we identified molecular features that provide catalysis and quantified their energetic contributions to catalysis. Serine proteases precisely position their reactants in destabilized conformers, creating a downhill energetic gradient that selectively favors the motions required for reaction while limiting off-pathway conformational states. The same catalytic features have repeatedly evolved in proteases and additional enzymes across multiple distinct structural folds. Our ensemble-function analyses revealed previously unknown catalytic features, provided quantitative models based on simple physical and chemical principles, and identified motifs recurrent in nature that may inspire enzyme design.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Fagerberg, John Attanasio, Christine Dien, Jaiveer Singh, Emily A. Kessler, Leena Abdullah, Jian Shen, Brian G. Hunt, Kelli A. Connolly, Edward De Brouwer, Jiaming He, Nivedita R. Iyer, Jessica Buck, Emily R. Borr, Martina Damo, Gena G. Foster, Josephine R. Giles, Yina H. Huang, John S. Tsang, Smita Krishnaswamy, Weiguo Cui, Nikhil S. Joshi
Naïve CD8 T cells have the potential to differentiate into a spectrum of functional states during an immune response. How these developmental decisions are made and what mechanisms exist to suppress differentiation toward alternative fates remains unclear. We employed in vivo CRISPR-Cas9–based perturbation sequencing to assess the role of ~40 transcription factors (TFs) and epigenetic modulators in T cell fate decisions. Unexpectedly, we found that knockout of the TF Klf2 resulted in aberrant differentiation to exhausted-like CD8 T cells during acute infection. KLF2 was required to suppress the exhaustion-promoting TF TOX and to enable the TF TBET to drive effector differentiation. KLF2 was also necessary to maintain a polyfunctional tumor-specific progenitor state. Thus, KLF2 provides effector CD8 T cell lineage fidelity and suppresses the exhaustion program.
{"title":"KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection","authors":"Eric Fagerberg, John Attanasio, Christine Dien, Jaiveer Singh, Emily A. Kessler, Leena Abdullah, Jian Shen, Brian G. Hunt, Kelli A. Connolly, Edward De Brouwer, Jiaming He, Nivedita R. Iyer, Jessica Buck, Emily R. Borr, Martina Damo, Gena G. Foster, Josephine R. Giles, Yina H. Huang, John S. Tsang, Smita Krishnaswamy, Weiguo Cui, Nikhil S. Joshi","doi":"","DOIUrl":"","url":null,"abstract":"<div >Naïve CD8 T cells have the potential to differentiate into a spectrum of functional states during an immune response. How these developmental decisions are made and what mechanisms exist to suppress differentiation toward alternative fates remains unclear. We employed in vivo CRISPR-Cas9–based perturbation sequencing to assess the role of ~40 transcription factors (TFs) and epigenetic modulators in T cell fate decisions. Unexpectedly, we found that knockout of the TF <i>Klf2</i> resulted in aberrant differentiation to exhausted-like CD8 T cells during acute infection. KLF2 was required to suppress the exhaustion-promoting TF TOX and to enable the TF TBET to drive effector differentiation. KLF2 was also necessary to maintain a polyfunctional tumor-specific progenitor state. Thus, KLF2 provides effector CD8 T cell lineage fidelity and suppresses the exhaustion program.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikolai Hecker, Niklas Kempynck, David Mauduit, Darina Abaffyová, Roel Vandepoel, Sam Dieltiens, Lars Borm, Ioannis Sarropoulos, Carmen Bravo González-Blas, Julie De Man, Kristofer Davie, Elke Leysen, Jeroen Vandensteen, Rani Moors, Gert Hulselmans, Lynette Lim, Joris De Wit, Valerie Christiaens, Suresh Poovathingal, Stein Aerts
Combinations of transcription factors govern the identity of cell types, which is reflected by genomic enhancer codes. We used deep learning to characterize these enhancer codes and devised three metrics to compare cell types in the telencephalon across amniotes. To this end, we generated single-cell multiome and spatially resolved transcriptomics data of the chicken telencephalon. Enhancer codes of orthologous nonneuronal and γ-aminobutyric acid–mediated (GABAergic) cell types show a high degree of similarity across amniotes, whereas excitatory neurons of the mammalian neocortex and avian pallium exhibit varying degrees of similarity. Enhancer codes of avian mesopallial neurons are most similar to those of mammalian deep-layer neurons. With this study, we present generally applicable deep learning approaches to characterize and compare cell types on the basis of genomic regulatory sequences.
{"title":"Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium","authors":"Nikolai Hecker, Niklas Kempynck, David Mauduit, Darina Abaffyová, Roel Vandepoel, Sam Dieltiens, Lars Borm, Ioannis Sarropoulos, Carmen Bravo González-Blas, Julie De Man, Kristofer Davie, Elke Leysen, Jeroen Vandensteen, Rani Moors, Gert Hulselmans, Lynette Lim, Joris De Wit, Valerie Christiaens, Suresh Poovathingal, Stein Aerts","doi":"","DOIUrl":"","url":null,"abstract":"<div >Combinations of transcription factors govern the identity of cell types, which is reflected by genomic enhancer codes. We used deep learning to characterize these enhancer codes and devised three metrics to compare cell types in the telencephalon across amniotes. To this end, we generated single-cell multiome and spatially resolved transcriptomics data of the chicken telencephalon. Enhancer codes of orthologous nonneuronal and γ-aminobutyric acid–mediated (GABAergic) cell types show a high degree of similarity across amniotes, whereas excitatory neurons of the mammalian neocortex and avian pallium exhibit varying degrees of similarity. Enhancer codes of avian mesopallial neurons are most similar to those of mammalian deep-layer neurons. With this study, we present generally applicable deep learning approaches to characterize and compare cell types on the basis of genomic regulatory sequences.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eneritz Rueda-Alaña, Rodrigo Senovilla-Ganzo, Marco Grillo, Enrique Vázquez, Sergio Marco-Salas, Tatiana Gallego-Flores, Aitor Ordeñana-Manso, Artemis Ftara, Laura Escobar, Alberto Benguría, Ana Quintas, Ana Dopazo, Miriam Rábano, María dM Vivanco, Ana María Aransay, Daniel Garrigos, Ángel Toval, José Luis Ferrán, Mats Nilsson, Juan Manuel Encinas-Pérez, Maurizio De Pittà, Fernando García-Moreno
The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits’ stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.
{"title":"Evolutionary convergence of sensory circuits in the pallium of amniotes","authors":"Eneritz Rueda-Alaña, Rodrigo Senovilla-Ganzo, Marco Grillo, Enrique Vázquez, Sergio Marco-Salas, Tatiana Gallego-Flores, Aitor Ordeñana-Manso, Artemis Ftara, Laura Escobar, Alberto Benguría, Ana Quintas, Ana Dopazo, Miriam Rábano, María dM Vivanco, Ana María Aransay, Daniel Garrigos, Ángel Toval, José Luis Ferrán, Mats Nilsson, Juan Manuel Encinas-Pérez, Maurizio De Pittà, Fernando García-Moreno","doi":"","DOIUrl":"","url":null,"abstract":"<div >The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits’ stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steven Henikoff, Ye Zheng, Ronald M. Paranal, Yiling Xu, Jacob E. Greene, Jorja G. Henikoff, Zachary R. Russell, Frank Szulzewsky, H. Nayanga Thirimanne, Sita Kugel, Eric C. Holland, Kami Ahmad
Genome-wide hypertranscription is common in human cancer and predicts poor prognosis. To understand how hypertranscription might drive cancer, we applied our formalin-fixed paraffin-embedded (FFPE)–cleavage under targeted accessible chromatin method for mapping RNA polymerase II (RNAPII) genome-wide in FFPE sections. We demonstrate global RNAPII elevations in mouse gliomas and assorted human tumors in small clinical samples and discover regional elevations corresponding to de novo HER2 amplifications punctuated by likely selective sweeps. RNAPII occupancy at S-phase-dependent histone genes correlated with WHO grade in meningiomas, accurately predicted rapid recurrence, and corresponded to whole-arm chromosome losses. Elevated RNAPII at histone genes in meningiomas and diverse breast cancers is consistent with histone production being rate-limiting for S-phase progression and histone gene hypertranscription driving overproliferation and aneuploidy in cancer, with general implications for precision oncology.
{"title":"RNA polymerase II at histone genes predicts outcome in human cancer","authors":"Steven Henikoff, Ye Zheng, Ronald M. Paranal, Yiling Xu, Jacob E. Greene, Jorja G. Henikoff, Zachary R. Russell, Frank Szulzewsky, H. Nayanga Thirimanne, Sita Kugel, Eric C. Holland, Kami Ahmad","doi":"","DOIUrl":"","url":null,"abstract":"<div >Genome-wide hypertranscription is common in human cancer and predicts poor prognosis. To understand how hypertranscription might drive cancer, we applied our formalin-fixed paraffin-embedded (FFPE)–cleavage under targeted accessible chromatin method for mapping RNA polymerase II (RNAPII) genome-wide in FFPE sections. We demonstrate global RNAPII elevations in mouse gliomas and assorted human tumors in small clinical samples and discover regional elevations corresponding to de novo HER2 amplifications punctuated by likely selective sweeps. RNAPII occupancy at S-phase-dependent histone genes correlated with WHO grade in meningiomas, accurately predicted rapid recurrence, and corresponded to whole-arm chromosome losses. Elevated RNAPII at histone genes in meningiomas and diverse breast cancers is consistent with histone production being rate-limiting for S-phase progression and histone gene hypertranscription driving overproliferation and aneuploidy in cancer, with general implications for precision oncology.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keith T. Smith, Sacha Vignieri, Madeleine Seale, Stella M. Hurtley, Mattia Maroso, Yury Suleymanov, Phil Szuromi
{"title":"In Other Journals","authors":"Keith T. Smith, Sacha Vignieri, Madeleine Seale, Stella M. Hurtley, Mattia Maroso, Yury Suleymanov, Phil Szuromi","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/science.adw6478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeff P. Prancevic, Hansjörg Seybold, James W. Kirchner
The aggregate length of flowing streams in a drainage network lengthens and shortens as landscapes become wetter and drier. However, direct measurements of stream network variability have been limited to a handful of small drainage basins. We estimated the variability of stream network length for 14,765 gauged basins across the contiguous United States using measured streamflow distributions and topography-based estimates of how sensitive each stream network is to changing landscape wetness (the network’s elasticity). We find that the median US stream network is five times longer during annual high-flow conditions than during annual low-flow conditions. Stream networks are more dynamic in some regions than in others, driven by regional differences in both hydroclimatology and the networks’ elasticity in response to hydroclimatic forcing.
{"title":"Variability of flowing stream network length across the US","authors":"Jeff P. Prancevic, Hansjörg Seybold, James W. Kirchner","doi":"","DOIUrl":"","url":null,"abstract":"<div >The aggregate length of flowing streams in a drainage network lengthens and shortens as landscapes become wetter and drier. However, direct measurements of stream network variability have been limited to a handful of small drainage basins. We estimated the variability of stream network length for 14,765 gauged basins across the contiguous United States using measured streamflow distributions and topography-based estimates of how sensitive each stream network is to changing landscape wetness (the network’s elasticity). We find that the median US stream network is five times longer during annual high-flow conditions than during annual low-flow conditions. Stream networks are more dynamic in some regions than in others, driven by regional differences in both hydroclimatology and the networks’ elasticity in response to hydroclimatic forcing.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shujuan Mao, William L. Ellsworth, Yujie Zheng, Gregory C. Beroza
In early 2023, a series of intense atmospheric-river storms eased California’s historic drought, yet the spatiotemporal extent of groundwater recovery remains poorly understood. We tracked two-decadal changes in groundwater in Greater Los Angeles using seismic ambient-field interferometry. The derived seismic hydrographs reveal distinct expressions of groundwater and surficial water droughts: Whereas surface and near-surface water storage nearly fully recovered in the epic wet season of 2023, only about 25% of the groundwater lost since 2006 was restored. On a decadal scale, we find substantial depletion in aquifers below 50-meter depth, with only limited storm-related recovery. Our analysis underscores the need to monitor deep aquifers for a more complete assessment of total water deficits, using high-resolution tools such as seismic sensing.
{"title":"Depth-dependent seismic sensing of groundwater recovery from the atmospheric-river storms of 2023","authors":"Shujuan Mao, William L. Ellsworth, Yujie Zheng, Gregory C. Beroza","doi":"","DOIUrl":"","url":null,"abstract":"<div >In early 2023, a series of intense atmospheric-river storms eased California’s historic drought, yet the spatiotemporal extent of groundwater recovery remains poorly understood. We tracked two-decadal changes in groundwater in Greater Los Angeles using seismic ambient-field interferometry. The derived seismic hydrographs reveal distinct expressions of groundwater and surficial water droughts: Whereas surface and near-surface water storage nearly fully recovered in the epic wet season of 2023, only about 25% of the groundwater lost since 2006 was restored. On a decadal scale, we find substantial depletion in aquifers below 50-meter depth, with only limited storm-related recovery. Our analysis underscores the need to monitor deep aquifers for a more complete assessment of total water deficits, using high-resolution tools such as seismic sensing.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}