A new age in protein design empowered by deep learning.

Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, Bruno Correia
{"title":"A new age in protein design empowered by deep learning.","authors":"Hamed Khakzad, Ilia Igashov, Arne Schneuing, Casper Goverde, Michael Bronstein, Bruno Correia","doi":"10.1016/j.cels.2023.10.006","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid progress in the field of deep learning has had a significant impact on protein design. Deep learning methods have recently produced a breakthrough in protein structure prediction, leading to the availability of high-quality models for millions of proteins. Along with novel architectures for generative modeling and sequence analysis, they have revolutionized the protein design field in the past few years remarkably by improving the accuracy and ability to identify novel protein sequences and structures. Deep neural networks can now learn and extract the fundamental features of protein structures, predict how they interact with other biomolecules, and have the potential to create new effective drugs for treating disease. As their applicability in protein design is rapidly growing, we review the recent developments and technology in deep learning methods and provide examples of their performance to generate novel functional proteins.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.10.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid progress in the field of deep learning has had a significant impact on protein design. Deep learning methods have recently produced a breakthrough in protein structure prediction, leading to the availability of high-quality models for millions of proteins. Along with novel architectures for generative modeling and sequence analysis, they have revolutionized the protein design field in the past few years remarkably by improving the accuracy and ability to identify novel protein sequences and structures. Deep neural networks can now learn and extract the fundamental features of protein structures, predict how they interact with other biomolecules, and have the potential to create new effective drugs for treating disease. As their applicability in protein design is rapidly growing, we review the recent developments and technology in deep learning methods and provide examples of their performance to generate novel functional proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习为蛋白质设计开启了新时代。
深度学习领域的快速发展对蛋白质设计产生了重大影响。深度学习方法最近在蛋白质结构预测方面取得了突破,导致数百万蛋白质的高质量模型的可用性。随着生成建模和序列分析的新架构,它们在过去几年中通过提高识别新蛋白质序列和结构的准确性和能力,显著地改变了蛋白质设计领域。深度神经网络现在可以学习和提取蛋白质结构的基本特征,预测它们如何与其他生物分子相互作用,并有可能创造新的有效药物来治疗疾病。由于它们在蛋白质设计中的适用性正在迅速增长,我们回顾了深度学习方法的最新发展和技术,并提供了它们在生成新型功能蛋白质方面的性能示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient, not-only-linear correlation coefficient based on clustering. Imputing abundance of over 2,500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. Promoter DNA methylation and transcription factor condensation are linked to transcriptional memory in mammalian cells. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Environmental modulators of algae-bacteria interactions at scale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1