首页 > 最新文献

Cell systems最新文献

英文 中文
Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells.
Pub Date : 2024-12-18 Epub Date: 2024-11-29 DOI: 10.1016/j.cels.2024.11.001
Yale S Michaels, Matthew C Major, Becca Bonham-Carter, Jingqi Zhang, Tiam Heydari, John M Edgar, Mona M Siu, Laura Greenstreet, Roser Vilarrasa-Blasi, Seungjoon Kim, Elizabeth L Castle, Aden Forrow, M Iliana Ibanez-Rios, Carla Zimmerman, Yvonne Chung, Tara Stach, Nico Werschler, David J H F Knapp, Roser Vento-Tormo, Geoffrey Schiebinger, Peter W Zandstra

T cells develop from hematopoietic progenitors in the thymus and protect against pathogens and cancer. However, the emergence of human T cell-competent blood progenitors and their subsequent specification to the T lineage have been challenging to capture in real time. Here, we leveraged a pluripotent stem cell differentiation system to understand the transcriptional dynamics and cell fate restriction events that underlie this critical developmental process. Time-resolved single-cell RNA sequencing revealed that downregulation of the multipotent hematopoietic program, upregulation of >90 lineage-associated transcription factors, and cell-cycle exit all occur within a highly coordinated developmental window. Gene-regulatory network inference uncovered a role for YBX1 in T lineage specification. We mapped the differentiation cell fate hierarchy using transcribed lineage barcoding and discovered that mast and myeloid potential bifurcate from each other early in hematopoiesis, upstream of T lineage restriction. Our systems-level analyses provide a quantitative, time-resolved model of human T cell fate specification. A record of this paper's transparent peer review process is included in the supplemental information.

{"title":"Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells.","authors":"Yale S Michaels, Matthew C Major, Becca Bonham-Carter, Jingqi Zhang, Tiam Heydari, John M Edgar, Mona M Siu, Laura Greenstreet, Roser Vilarrasa-Blasi, Seungjoon Kim, Elizabeth L Castle, Aden Forrow, M Iliana Ibanez-Rios, Carla Zimmerman, Yvonne Chung, Tara Stach, Nico Werschler, David J H F Knapp, Roser Vento-Tormo, Geoffrey Schiebinger, Peter W Zandstra","doi":"10.1016/j.cels.2024.11.001","DOIUrl":"10.1016/j.cels.2024.11.001","url":null,"abstract":"<p><p>T cells develop from hematopoietic progenitors in the thymus and protect against pathogens and cancer. However, the emergence of human T cell-competent blood progenitors and their subsequent specification to the T lineage have been challenging to capture in real time. Here, we leveraged a pluripotent stem cell differentiation system to understand the transcriptional dynamics and cell fate restriction events that underlie this critical developmental process. Time-resolved single-cell RNA sequencing revealed that downregulation of the multipotent hematopoietic program, upregulation of >90 lineage-associated transcription factors, and cell-cycle exit all occur within a highly coordinated developmental window. Gene-regulatory network inference uncovered a role for YBX1 in T lineage specification. We mapped the differentiation cell fate hierarchy using transcribed lineage barcoding and discovered that mast and myeloid potential bifurcate from each other early in hematopoiesis, upstream of T lineage restriction. Our systems-level analyses provide a quantitative, time-resolved model of human T cell fate specification. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1245-1263.e10"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized reporters for multiplexed detection of transcription factor activity.
Pub Date : 2024-12-18 Epub Date: 2024-12-06 DOI: 10.1016/j.cels.2024.11.003
Max Trauernicht, Teodora Filipovska, Chaitanya Rastogi, Bas van Steensel

In any given cell type, dozens of transcription factors (TFs) act in concert to control the activity of the genome by binding to specific DNA sequences in regulatory elements. Despite their considerable importance, we currently lack simple tools to directly measure the activity of many TFs in parallel. Massively parallel reporter assays (MPRAs) allow the detection of TF activities in a multiplexed fashion; however, we lack basic understanding to rationally design sensitive reporters for many TFs. Here, we use an MPRA to systematically optimize transcriptional reporters for 86 TFs and evaluate the specificity of all reporters across a wide array of TF perturbation conditions. We thus identified critical TF reporter design features and obtained highly sensitive and specific reporters for 62 TFs, many of which outperform available reporters. The resulting collection of "prime" TF reporters can be used to uncover TF regulatory networks and to illuminate signaling pathways. A record of this paper's transparent peer review process is included in the supplemental information.

{"title":"Optimized reporters for multiplexed detection of transcription factor activity.","authors":"Max Trauernicht, Teodora Filipovska, Chaitanya Rastogi, Bas van Steensel","doi":"10.1016/j.cels.2024.11.003","DOIUrl":"10.1016/j.cels.2024.11.003","url":null,"abstract":"<p><p>In any given cell type, dozens of transcription factors (TFs) act in concert to control the activity of the genome by binding to specific DNA sequences in regulatory elements. Despite their considerable importance, we currently lack simple tools to directly measure the activity of many TFs in parallel. Massively parallel reporter assays (MPRAs) allow the detection of TF activities in a multiplexed fashion; however, we lack basic understanding to rationally design sensitive reporters for many TFs. Here, we use an MPRA to systematically optimize transcriptional reporters for 86 TFs and evaluate the specificity of all reporters across a wide array of TF perturbation conditions. We thus identified critical TF reporter design features and obtained highly sensitive and specific reporters for 62 TFs, many of which outperform available reporters. The resulting collection of \"prime\" TF reporters can be used to uncover TF regulatory networks and to illuminate signaling pathways. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1107-1122.e7"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation. 通过计算引导和 CRISPRi- 驱动的稳健性调控来定制微生物的适应性。
Pub Date : 2024-12-18 Epub Date: 2024-12-11 DOI: 10.1016/j.cels.2024.11.012
Bin Yang, Chao Wu, Yuxi Teng, Katherine J Chou, Michael T Guarnieri, Wei Xiong

The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.

转基因微生物(GMMs)在各行各业的广泛应用突出表明,迫切需要强有力的策略来降低其潜在失控逸散所带来的风险。本研究将计算建模与 CRISPR 干扰(CRISPRi)相结合,以完善转基因微生物代谢的稳健性。利用集合建模,我们实现了对易受表达改变影响的酶靶点的高通量硅学筛选。通过转化这些见解,我们开发出了功能性 CRISPRi,通过多重基因敲除提高了适应性控制。我们的方法通过改进绝缘体的 gRNA 结构和控制紧凑型 Cas12m 的关断开关电路得到了增强,从而合理地设计出了逃逸频率低于美国国立卫生研究院标准的菌株。这种方法的有效性在各种条件下都得到了证实,展示了其安全管理 GMM 的能力。这项研究强调了微生物新陈代谢的恢复能力,通过对关键节点进行战略性改造,使其停止生长而不产生明显的抗药性,从而实现更可靠、更精确的 GMM 控制。本论文的同行评审过程透明,记录见补充信息。
{"title":"Tailoring microbial fitness through computational steering and CRISPRi-driven robustness regulation.","authors":"Bin Yang, Chao Wu, Yuxi Teng, Katherine J Chou, Michael T Guarnieri, Wei Xiong","doi":"10.1016/j.cels.2024.11.012","DOIUrl":"10.1016/j.cels.2024.11.012","url":null,"abstract":"<p><p>The widespread application of genetically modified microorganisms (GMMs) across diverse sectors underscores the pressing need for robust strategies to mitigate the risks associated with their potential uncontrolled escape. This study merges computational modeling with CRISPR interference (CRISPRi) to refine GMM metabolic robustness. Utilizing ensemble modeling, we achieved high-throughput in silico screening for enzymatic targets susceptible to expression alterations. Translating these insights, we developed functional CRISPRi, boosting fitness control via multiplexed gene knockdown. Our method, enhanced by an insulator-improved gRNA structure and an off-switch circuit controlling a compact Cas12m, resulted in rationally engineered strains with escape frequencies below National Institutes of Health standards. The effectiveness of this approach was confirmed under various conditions, showcasing its ability for secure GMM management. This research underscores the resilience of microbial metabolism, strategically modifying key nodes to halt growth without provoking significant resistance, thereby enabling more reliable and precise GMM control. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1133-1147.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cracking the code of adaptive immunity: The role of computational tools.
Pub Date : 2024-12-18 DOI: 10.1016/j.cels.2024.11.009
Kasi Vegesana, Paul G Thomas

In recent years, the advances in high-throughput and deep sequencing have generated a diverse amount of adaptive immune repertoire data. This surge in data has seen a proportional increase in computational methods aimed to characterize T cell receptor (TCR) repertoires. In this perspective, we will provide a brief commentary on the various domains of TCR repertoire analysis, their respective computational methods, and the ongoing challenges. Given the breadth of methods and applications of TCR analysis, we will focus our perspective on sequence-based computational methods.

{"title":"Cracking the code of adaptive immunity: The role of computational tools.","authors":"Kasi Vegesana, Paul G Thomas","doi":"10.1016/j.cels.2024.11.009","DOIUrl":"https://doi.org/10.1016/j.cels.2024.11.009","url":null,"abstract":"<p><p>In recent years, the advances in high-throughput and deep sequencing have generated a diverse amount of adaptive immune repertoire data. This surge in data has seen a proportional increase in computational methods aimed to characterize T cell receptor (TCR) repertoires. In this perspective, we will provide a brief commentary on the various domains of TCR repertoire analysis, their respective computational methods, and the ongoing challenges. Given the breadth of methods and applications of TCR analysis, we will focus our perspective on sequence-based computational methods.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1156-1167"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning.
Pub Date : 2024-12-18 DOI: 10.1016/j.cels.2024.11.006
Timothy J O'Donnell, Chakravarthi Kanduri, Giulio Isacchini, Julien P Limenitakis, Rebecca A Brachman, Raymond A Alvarez, Ingrid H Haff, Geir K Sandve, Victor Greiff

The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active investigation for a range of tasks relevant to understanding and manipulating the adaptive immune receptor repertoire, including matching receptors to the antigens they bind, generating antibodies or T cell receptors for use as therapeutics, and diagnosing disease based on patient repertoires. Progress on these tasks has the potential to substantially improve the development of vaccines, therapeutics, and diagnostics, as well as advance our understanding of fundamental immunological principles. We outline key challenges for the field, highlighting the need for software benchmarking, targeted large-scale data generation, and coordinated research efforts.

{"title":"Reading the repertoire: Progress in adaptive immune receptor analysis using machine learning.","authors":"Timothy J O'Donnell, Chakravarthi Kanduri, Giulio Isacchini, Julien P Limenitakis, Rebecca A Brachman, Raymond A Alvarez, Ingrid H Haff, Geir K Sandve, Victor Greiff","doi":"10.1016/j.cels.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.cels.2024.11.006","url":null,"abstract":"<p><p>The adaptive immune system holds invaluable information on past and present immune responses in the form of B and T cell receptor sequences, but we are limited in our ability to decode this information. Machine learning approaches are under active investigation for a range of tasks relevant to understanding and manipulating the adaptive immune receptor repertoire, including matching receptors to the antigens they bind, generating antibodies or T cell receptors for use as therapeutics, and diagnosing disease based on patient repertoires. Progress on these tasks has the potential to substantially improve the development of vaccines, therapeutics, and diagnostics, as well as advance our understanding of fundamental immunological principles. We outline key challenges for the field, highlighting the need for software benchmarking, targeted large-scale data generation, and coordinated research efforts.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1168-1189"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the hidden network of STING's subcellular regulation.
Pub Date : 2024-12-18 DOI: 10.1016/j.cels.2024.11.014
Xiaoqi Sun, Brian D Brown

A new study deconvolutes the systems-level control of the cGAS-STING pathway and identifies many novel regulators of STING biology. This was made possible by optical pooled screening (OPS), which enables high-dimensional imaging of millions of gene-edited cells, showcasing the future of CRISPR screening.

{"title":"Unveiling the hidden network of STING's subcellular regulation.","authors":"Xiaoqi Sun, Brian D Brown","doi":"10.1016/j.cels.2024.11.014","DOIUrl":"https://doi.org/10.1016/j.cels.2024.11.014","url":null,"abstract":"<p><p>A new study deconvolutes the systems-level control of the cGAS-STING pathway and identifies many novel regulators of STING biology. This was made possible by optical pooled screening (OPS), which enables high-dimensional imaging of millions of gene-edited cells, showcasing the future of CRISPR screening.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1153-1155"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. 多模态数据的马尔可夫场网络模型可预测免疫系统扰动对猕猴静脉注射卡介苗的影响。
Pub Date : 2024-12-18 Epub Date: 2024-11-05 DOI: 10.1016/j.cels.2024.10.001
Shu Wang, Amy J Myers, Edward B Irvine, Chuangqi Wang, Pauline Maiello, Mark A Rodgers, Jaime Tomko, Kara Kracinovsky, H Jacob Borish, Michael C Chao, Douaa Mugahid, Patricia A Darrah, Robert A Seder, Mario Roederer, Charles A Scanga, Philana Ling Lin, Galit Alter, Sarah M Fortune, JoAnne L Flynn, Douglas A Lauffenburger

Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.

对多模式数据集的分析可以确定生物系统底层的多尺度相互作用,但由于间接影响通过未绘制的生物网络传播,可能会受到虚假连接的困扰。例如,对猕猴的研究表明,通过静脉途径接种卡介苗(BCG)可预防结核病,这与各种免疫数据模式的变化相关。为了消除虚假相关性并识别接种过疫苗的猕猴的公共多模式数据集(系统血清学、细胞因子和细胞测定法)中的关键免疫相互作用,我们应用了马尔可夫场(MFs),这是一种数据驱动方法,可通过多变量网络路径解释疫苗功效和免疫相关性,而不需要相对于多变量特征的大量样本(即猕猴)。我们发现,用 MF 整合多种数据模式有助于去除虚假连接。最后,我们利用 MF 预测了各种免疫节点的扰动结果,包括经过实验验证的 B 细胞耗竭,这种耗竭会诱发整个网络的变化,但不会降低疫苗保护能力。
{"title":"Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques.","authors":"Shu Wang, Amy J Myers, Edward B Irvine, Chuangqi Wang, Pauline Maiello, Mark A Rodgers, Jaime Tomko, Kara Kracinovsky, H Jacob Borish, Michael C Chao, Douaa Mugahid, Patricia A Darrah, Robert A Seder, Mario Roederer, Charles A Scanga, Philana Ling Lin, Galit Alter, Sarah M Fortune, JoAnne L Flynn, Douglas A Lauffenburger","doi":"10.1016/j.cels.2024.10.001","DOIUrl":"10.1016/j.cels.2024.10.001","url":null,"abstract":"<p><p>Analysis of multi-modal datasets can identify multi-scale interactions underlying biological systems but can be beset by spurious connections due to indirect impacts propagating through an unmapped biological network. For example, studies in macaques have shown that Bacillus Calmette-Guerin (BCG) vaccination by an intravenous route protects against tuberculosis, correlating with changes across various immune data modes. To eliminate spurious correlations and identify critical immune interactions in a public multi-modal dataset (systems serology, cytokines, and cytometry) of vaccinated macaques, we applied Markov fields (MFs), a data-driven approach that explains vaccine efficacy and immune correlations via multivariate network paths, without requiring large numbers of samples (i.e., macaques) relative to multivariate features. We find that integrating multiple data modes with MFs helps remove spurious connections. Finally, we used the MF to predict outcomes of perturbations at various immune nodes, including an experimentally validated B cell depletion that induced network-wide shifts without reducing vaccine protection.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1278-1294.e4"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three-node Turing gene circuit forms periodic spatial patterns in bacteria.
Pub Date : 2024-12-18 Epub Date: 2024-12-02 DOI: 10.1016/j.cels.2024.11.002
Jure Tica, Martina Oliver Huidobro, Tong Zhu, Georg K A Wachter, Roozbeh H Pazuki, Dario G Bazzoli, Natalie S Scholes, Elisa Tonello, Heike Siebert, Michael P H Stumpf, Robert G Endres, Mark Isalan

Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.

{"title":"A three-node Turing gene circuit forms periodic spatial patterns in bacteria.","authors":"Jure Tica, Martina Oliver Huidobro, Tong Zhu, Georg K A Wachter, Roozbeh H Pazuki, Dario G Bazzoli, Natalie S Scholes, Elisa Tonello, Heike Siebert, Michael P H Stumpf, Robert G Endres, Mark Isalan","doi":"10.1016/j.cels.2024.11.002","DOIUrl":"10.1016/j.cels.2024.11.002","url":null,"abstract":"<p><p>Turing patterns are self-organizing systems that can form spots, stripes, or labyrinths. Proposed examples in tissue organization include zebrafish pigmentation, digit spacing, and many others. The theory of Turing patterns in biology has been debated because of their stringent fine-tuning requirements, where patterns only occur within a small subset of parameters. This has complicated the engineering of synthetic Turing gene circuits from first principles, although natural genetic Turing networks have been identified. Here, we engineered a synthetic genetic reaction-diffusion system where three nodes interact according to a non-classical Turing network with improved parametric robustness. The system reproducibly generated stationary, periodic, concentric stripe patterns in growing E. coli colonies. A partial differential equation model reproduced the patterns, with a Turing parameter regime obtained by fitting to experimental data. Our synthetic Turing system can contribute to nanotechnologies, such as patterned biomaterial deposition, and provide insights into developmental patterning programs. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1123-1132.e3"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.
Pub Date : 2024-12-18 Epub Date: 2024-12-10 DOI: 10.1016/j.cels.2024.11.005
Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy

The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.

{"title":"Evaluating predictive patterns of antigen-specific B cells by single-cell transcriptome and antibody repertoire sequencing.","authors":"Lena Erlach, Raphael Kuhn, Andreas Agrafiotis, Danielle Shlesinger, Alexander Yermanos, Sai T Reddy","doi":"10.1016/j.cels.2024.11.005","DOIUrl":"10.1016/j.cels.2024.11.005","url":null,"abstract":"<p><p>The field of antibody discovery typically involves extensive experimental screening of B cells from immunized animals. Machine learning (ML)-guided prediction of antigen-specific B cells could accelerate this process but requires sufficient training data with antigen-specificity labeling. Here, we introduce a dataset of single-cell transcriptome and antibody repertoire sequencing of B cells from immunized mice, which are labeled as antigen specific or non-specific through experimental selections. We identify gene expression patterns associated with antigen specificity by differential gene expression analysis and assess their antibody sequence diversity. Subsequently, we benchmark various ML models, both linear and non-linear, trained on different combinations of gene expression and antibody repertoire features. Additionally, we assess transfer learning using features from general and antibody-specific protein language models (PLMs). Our findings show that gene expression-based models outperform sequence-based models for antigen-specificity predictions, highlighting a promising avenue for computationally guided antibody discovery.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"1295-1303.e5"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microengineered in vitro CAR T cell screens and assays.
Pub Date : 2024-12-18 DOI: 10.1016/j.cels.2024.11.011
Jaehoon Kim, Susan Napier Thomas

Established and emergent microengineered in vitro systems enable the evaluation of chimeric antigen receptor (CAR) T cell product purity, avidity, and functionality. Here, we describe such systems and how they have been used to optimize CAR T cell products by selecting highly viable cells, eliminating off-target cells, and tailoring avidity to balance efficacy and safety. The future of CAR T cell therapy development and manufacturing is expected to be anchored in a cyclical process that integrates multiple high-throughput and patient-centered techniques for identifying, enriching, and evaluating T cell subtypes. This article explores several cutting-edge platforms and methodologies relevant to these processes.

{"title":"Microengineered in vitro CAR T cell screens and assays.","authors":"Jaehoon Kim, Susan Napier Thomas","doi":"10.1016/j.cels.2024.11.011","DOIUrl":"https://doi.org/10.1016/j.cels.2024.11.011","url":null,"abstract":"<p><p>Established and emergent microengineered in vitro systems enable the evaluation of chimeric antigen receptor (CAR) T cell product purity, avidity, and functionality. Here, we describe such systems and how they have been used to optimize CAR T cell products by selecting highly viable cells, eliminating off-target cells, and tailoring avidity to balance efficacy and safety. The future of CAR T cell therapy development and manufacturing is expected to be anchored in a cyclical process that integrates multiple high-throughput and patient-centered techniques for identifying, enriching, and evaluating T cell subtypes. This article explores several cutting-edge platforms and methodologies relevant to these processes.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1209-1224"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1