Rapid Removal of Perfluoroalkanesulfonates from Water by β-Cyclodextrin Covalent Organic Frameworks

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2021-10-06 DOI:10.1021/acsami.1c14043
Wei Wang, Haipei Shao, Shuangxi Zhou, Donghai Zhu, Xiangzhe Jiang, Gang Yu, Shubo Deng*
{"title":"Rapid Removal of Perfluoroalkanesulfonates from Water by β-Cyclodextrin Covalent Organic Frameworks","authors":"Wei Wang,&nbsp;Haipei Shao,&nbsp;Shuangxi Zhou,&nbsp;Donghai Zhu,&nbsp;Xiangzhe Jiang,&nbsp;Gang Yu,&nbsp;Shubo Deng*","doi":"10.1021/acsami.1c14043","DOIUrl":null,"url":null,"abstract":"<p >Adsorption is an effective method for the removal of perfluoroalkanesulfonates (PFSAs) from water, and the limitation of the adsorption rate of existing adsorbents motivates efforts to develop novel adsorbents. Here, we developed four β-cyclodextrin covalent organic frameworks (β-CD-COFs) with a rapid removal rate and high adsorption capacity for four PFSAs in water including perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), and chlorinated polyfluorinated ether sulfonate (F53B). All β-CD-COFs exhibited extremely fast adsorption (adsorption equilibrium &lt;2 min) for PFSAs with high adsorption capacities (0.33–1.51 mmol/g), which were significantly better than those of traditional resins and activated carbons, probably due to the ordered pores of β-CD-COFs and the electron-deficient cavity β-CD. Density functional theory (DFT) calculations also showed that PFSAs could be captured in the β-CD cavity through strong interactions with a high binding energy. The novel β-CD-COFs were highly selective to PFSAs in simulated wastewater impacted by aqueous film-forming foams, and they could also rapidly remove them from an actual chrome plating wastewater within 2 min. Additionally, the β-CD-COFs could be regenerated by methanol with relatively good reusability in four cycles, further highlighting their application potential as PFAS adsorbents in water or wastewater.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.1c14043","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Adsorption is an effective method for the removal of perfluoroalkanesulfonates (PFSAs) from water, and the limitation of the adsorption rate of existing adsorbents motivates efforts to develop novel adsorbents. Here, we developed four β-cyclodextrin covalent organic frameworks (β-CD-COFs) with a rapid removal rate and high adsorption capacity for four PFSAs in water including perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), and chlorinated polyfluorinated ether sulfonate (F53B). All β-CD-COFs exhibited extremely fast adsorption (adsorption equilibrium <2 min) for PFSAs with high adsorption capacities (0.33–1.51 mmol/g), which were significantly better than those of traditional resins and activated carbons, probably due to the ordered pores of β-CD-COFs and the electron-deficient cavity β-CD. Density functional theory (DFT) calculations also showed that PFSAs could be captured in the β-CD cavity through strong interactions with a high binding energy. The novel β-CD-COFs were highly selective to PFSAs in simulated wastewater impacted by aqueous film-forming foams, and they could also rapidly remove them from an actual chrome plating wastewater within 2 min. Additionally, the β-CD-COFs could be regenerated by methanol with relatively good reusability in four cycles, further highlighting their application potential as PFAS adsorbents in water or wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
β-环糊精共价有机框架快速去除水中全氟烷磺酸盐
吸附是去除水中全氟烷磺酸盐(PFSAs)的有效方法,现有吸附剂吸附速率的局限性促使人们努力开发新型吸附剂。本研究开发了四种β-环糊精共价有机骨架(β-CD-COFs),对水中的全氟辛烷磺酸(PFOS)、全氟丁烷磺酸(PFBS)、全氟己磺酸(PFHxS)和氯化多氟醚磺酸(F53B)等四种pfsa具有快速脱除和高吸附能力。所有β-CD- cofs均表现出极快的吸附速度(吸附平衡2 min),具有较高的吸附量(0.33 ~ 1.51 mmol/g),明显优于传统树脂和活性炭,这可能是由于β-CD- cofs的有序孔隙和缺电子腔β-CD所致。密度泛函理论(DFT)计算也表明,pfsa可以通过与高结合能的强相互作用在β-CD腔中被捕获。新型β-CD-COFs对受水成膜泡沫冲击的模拟废水中pfsa具有较高的选择性,并能在2 min内快速去除实际镀铬废水中的pfsa。此外,β-CD-COFs可被甲醇再生,且在4个循环中具有较好的可重复使用性,进一步显示了其作为PFAS吸附剂在水或废水中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Corked Microcapsules Enabling Controlled Ultrasound-Mediated Protein Delivery. Cross-Linking-Integrated Sequential Deposition: A Method for Efficient and Reproducible Bulk Heterojunctions in Organic Solar Cells. Efficient Fog-Harvesting Origami Fan. Fully Integrated Biosensing System for Dynamic Monitoring of Sweat Glucose and Real-Time pH Adjustment Based on 3D Graphene MXene Aerogel. Improvement of Self-Driven Nanowire-Based Ultraviolet Photodetectors by Metal-Organic Frameworks for Controlling Humanoid Robots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1