Charging needs for electric semi-trailer trucks

Brennan Borlaug , Matthew Moniot , Alicia Birky , Marcus Alexander , Matteo Muratori
{"title":"Charging needs for electric semi-trailer trucks","authors":"Brennan Borlaug ,&nbsp;Matthew Moniot ,&nbsp;Alicia Birky ,&nbsp;Marcus Alexander ,&nbsp;Matteo Muratori","doi":"10.1016/j.rset.2022.100038","DOIUrl":null,"url":null,"abstract":"<div><p>Battery-electric vehicles provide a pathway to decarbonize heavy-duty trucking, but the market for heavy-duty battery-electric semi-trailer trucks is nascent, and specific charging requirements remain uncertain. We leverage large-scale vehicle telematics data (&gt;205 million miles of driving) to estimate the charging behaviors and infrastructure requirements for U.S. battery-electric semi-trailer trucks within three operating segments: local, regional, and long-haul. We model two types of charging—mid-shift (fast) and off-shift (slow)—and show that off-shift charging at speeds compatible with current light-duty charging infrastructure (i.e., ≤350 kW) can supply 35 to 77% of total energy demand for local and regional trucks with ≥300-mile range. Megawatt-level speeds are required for mid-shift charging, which make up 44 to 57% of energy demand for long-haul trucks with ≥500-mile range. However, demand shifts from mid-shift to off-shift charging as the range for battery-electric trucks increases and when off-shift charging is widely available. Finally, we observe geographic trends in charging demand, finding that local trucks have greater demand within urban areas, whereas long-haul trucks have more demand along rural interstate corridors. As the range for battery-electric trucks increases, we show that charging demand shifts from rural to urban locations due to observed vehicle dwell tendencies.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X22000228/pdfft?md5=d3359d7368d97b7acfd5bf2dbfd4373d&pid=1-s2.0-S2667095X22000228-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X22000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Battery-electric vehicles provide a pathway to decarbonize heavy-duty trucking, but the market for heavy-duty battery-electric semi-trailer trucks is nascent, and specific charging requirements remain uncertain. We leverage large-scale vehicle telematics data (>205 million miles of driving) to estimate the charging behaviors and infrastructure requirements for U.S. battery-electric semi-trailer trucks within three operating segments: local, regional, and long-haul. We model two types of charging—mid-shift (fast) and off-shift (slow)—and show that off-shift charging at speeds compatible with current light-duty charging infrastructure (i.e., ≤350 kW) can supply 35 to 77% of total energy demand for local and regional trucks with ≥300-mile range. Megawatt-level speeds are required for mid-shift charging, which make up 44 to 57% of energy demand for long-haul trucks with ≥500-mile range. However, demand shifts from mid-shift to off-shift charging as the range for battery-electric trucks increases and when off-shift charging is widely available. Finally, we observe geographic trends in charging demand, finding that local trucks have greater demand within urban areas, whereas long-haul trucks have more demand along rural interstate corridors. As the range for battery-electric trucks increases, we show that charging demand shifts from rural to urban locations due to observed vehicle dwell tendencies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动半挂车的充电需求
电池电动汽车为重型卡车的脱碳提供了一条途径,但重型电池电动半挂卡车的市场刚刚起步,具体的充电要求仍不确定。我们利用大规模车辆远程信息处理数据(2.05亿英里的行驶里程)来估计美国电池电动半挂车在本地、区域和长途三个运营领域的充电行为和基础设施需求。我们模拟了两种类型的充电——中档(快速)和下档(慢速)——并表明,与当前轻型充电基础设施(即≤350千瓦)兼容的下档充电速度可以为本地和区域卡车提供35%至77%的总能源需求,续航里程≥300英里。中档充电需要兆瓦级的速度,对于续航里程≥500英里的长途卡车来说,中档充电占能源需求的44%至57%。然而,随着纯电动卡车行驶里程的增加,以及当换挡充电广泛普及时,需求将从换挡充电转向换挡充电。最后,我们观察了充电需求的地理趋势,发现本地卡车在城市地区有更大的需求,而长途卡车在农村州际走廊有更多的需求。随着纯电动卡车行驶里程的增加,我们发现由于观察到的车辆停放趋势,充电需求从农村转移到城市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Scenarios for wind capacity deployment in Colombia by 2050: A perspective from system dynamics modeling Optimizing the use of limited amounts of hydrogen in existing combined heat and power plants Comprehensive and open model structure for the design of future energy systems with sector coupling Strengthening energy system resilience planning under uncertainty by minimizing regret The political economy of mini-grid electricity development and innovation in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1