Neural expert system using fuzzy teaching input and its application to medical diagnosis

Yoichi Hayashi
{"title":"Neural expert system using fuzzy teaching input and its application to medical diagnosis","authors":"Yoichi Hayashi","doi":"10.1016/1069-0115(94)90019-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper first proposes a fuzzy neural network and the learning method using fuzzy teaching input. As an application, a fuzzy neural expert system (FNES) for diagnosing hepatobiliary disorders has been developed. We used a real medical database containing the results of nine biochemical tests of four hepatobiliary disorders. After learning by using training data (373 patients), the proposed system correctly diagnosed 77.3% of test (external) data from 163 previously unseen patients and correctly diagnosed 100% of the training data. Conversely, the diagnostic accuracy of the linear discriminant analysis was 63.2% of the test data and 67.0% of the training data.</p></div>","PeriodicalId":100668,"journal":{"name":"Information Sciences - Applications","volume":"1 1","pages":"Pages 47-58"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1069-0115(94)90019-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences - Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1069011594900191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper first proposes a fuzzy neural network and the learning method using fuzzy teaching input. As an application, a fuzzy neural expert system (FNES) for diagnosing hepatobiliary disorders has been developed. We used a real medical database containing the results of nine biochemical tests of four hepatobiliary disorders. After learning by using training data (373 patients), the proposed system correctly diagnosed 77.3% of test (external) data from 163 previously unseen patients and correctly diagnosed 100% of the training data. Conversely, the diagnostic accuracy of the linear discriminant analysis was 63.2% of the test data and 67.0% of the training data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊教学输入神经专家系统及其在医学诊断中的应用
本文首先提出了模糊神经网络和模糊教学输入的学习方法。作为一种应用,开发了一种用于肝胆疾病诊断的模糊神经专家系统(FNES)。我们使用了一个真实的医学数据库,其中包含四种肝胆疾病的九项生化测试结果。通过使用训练数据(373名患者)进行学习后,该系统正确诊断了163名以前未见过的患者的77.3%的测试(外部)数据,并正确诊断了100%的训练数据。相反,线性判别分析的诊断准确率为测试数据的63.2%,训练数据的67.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An application of fuzzy logic control to a gimballed payload on a space platform Logic programming and the execution model of Prolog Author index to volumes 3–4 Volume contents for 1995 Title index for volume 3–4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1