Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: Imidacloprid degradation and implications on simultaneous bacterial inactivation
Somaye Akbari , Gholamreza Moussavi , Jeremie Decker , Maria Luisa Marin , Francisco Bosca , Stefanos Giannakis
{"title":"Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: Imidacloprid degradation and implications on simultaneous bacterial inactivation","authors":"Somaye Akbari , Gholamreza Moussavi , Jeremie Decker , Maria Luisa Marin , Francisco Bosca , Stefanos Giannakis","doi":"10.1016/j.apcatb.2022.121732","DOIUrl":null,"url":null,"abstract":"<div><p>Impressive Imidacloprid (IMD) degradation and bacterial inactivation were attained through the photocatalytic activation of peroxymonosulfate (PMS) via a novel, N-doped MgO@Fe<sub>3</sub>O<sub>4</sub>, under visible light. After complete characterization (XPS, XRD, FT-IR, FE-SEM, EDX, HRTEM, DRS, BET, VSM, and EIS), using [PMS]=75 mg/L, [N-MgO@Fe<sub>3</sub>O<sub>4</sub>]=150 mg/L at pH=5.6, around 95% of 10 mg/L IMD was degraded within 60 min; highly synergic interactions between the various catalytic routes were revealed. Extensive scavenger tests and EPR studies revealed that SO<sub>4</sub><sup>•-</sup>, HO<sup>•</sup>, and <sup>1</sup>O<sub>2</sub> are generated and play a key role in IMD degradation. Tap water experiments proceeded unhindered, and only the presence of high HCO<sub>3</sub><sup>-</sup> and PO<sub>4</sub><sup>3-</sup> concentration resulted in a decrease in the IMD degradation efficiency, while negligible leaching, magnetization, notable separation, and reusability properties were well-preserved for six repetitive cycles. Finally, <em>E. coli</em> disinfection was achieved before IMD degradation, possibly affected by its transformation byproducts. The overall efficacy of N-MgO@Fe<sub>3</sub>O<sub>4</sub> indicated the potential for implementation in contaminated waters.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"317 ","pages":"Article 121732"},"PeriodicalIF":20.2000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0926337322006737/pdfft?md5=be1aa3defdb38389bcdd0c41110e3522&pid=1-s2.0-S0926337322006737-main.pdf","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337322006737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 26
Abstract
Impressive Imidacloprid (IMD) degradation and bacterial inactivation were attained through the photocatalytic activation of peroxymonosulfate (PMS) via a novel, N-doped MgO@Fe3O4, under visible light. After complete characterization (XPS, XRD, FT-IR, FE-SEM, EDX, HRTEM, DRS, BET, VSM, and EIS), using [PMS]=75 mg/L, [N-MgO@Fe3O4]=150 mg/L at pH=5.6, around 95% of 10 mg/L IMD was degraded within 60 min; highly synergic interactions between the various catalytic routes were revealed. Extensive scavenger tests and EPR studies revealed that SO4•-, HO•, and 1O2 are generated and play a key role in IMD degradation. Tap water experiments proceeded unhindered, and only the presence of high HCO3- and PO43- concentration resulted in a decrease in the IMD degradation efficiency, while negligible leaching, magnetization, notable separation, and reusability properties were well-preserved for six repetitive cycles. Finally, E. coli disinfection was achieved before IMD degradation, possibly affected by its transformation byproducts. The overall efficacy of N-MgO@Fe3O4 indicated the potential for implementation in contaminated waters.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.