Qian Zhang , Sen Wang , Xuerong Shi , Mei Dong , Jiangang Chen , Juan Zhang , Jianguo Wang , Weibin Fan
{"title":"Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite","authors":"Qian Zhang , Sen Wang , Xuerong Shi , Mei Dong , Jiangang Chen , Juan Zhang , Jianguo Wang , Weibin Fan","doi":"10.1016/j.apcatb.2024.123748","DOIUrl":null,"url":null,"abstract":"<div><p>Direct conversion of CO<sub>2</sub> into higher alcohols (C<sub>2+</sub>OH) is highly desirable, but rather challenging due to requiring the synergetic action of C-C coupling and CO insertion. Here, we developed a new K-CuZnAl/Zr-CuFe composite, which gave CO<sub>2</sub> conversion and C<sub>2+</sub>OH selectivity of 40.6% and 22.4% respectively, while CO selectivity is only 10.3% at 320 °C, 4 MPa and 6000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. The C<sub>2+</sub>OH STY can reach 195.1 mg g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup>, and is well maintained within 200 h at higher GHSV of 24000 mL g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. Introduction of K-CuZnAl and decrease of the contact distance of K-CuZnAl and Zr-CuFe boost the formation and subsequent conversion of CO* intermediate. In addition, doping small amounts of Zr into CuFe catalyst hinders the phase separation of Cu and Fe species by enhancing their interface interaction. As a result, the CH<sub>x</sub> * species generated on iron carbide through CO* dissociative activation quickly reacts with the non-dissociative adsorbed CO* on adjacent Cu to produce more C<sub>2+</sub>OH.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"346 ","pages":"Article 123748"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000596","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct conversion of CO2 into higher alcohols (C2+OH) is highly desirable, but rather challenging due to requiring the synergetic action of C-C coupling and CO insertion. Here, we developed a new K-CuZnAl/Zr-CuFe composite, which gave CO2 conversion and C2+OH selectivity of 40.6% and 22.4% respectively, while CO selectivity is only 10.3% at 320 °C, 4 MPa and 6000 mL gcat−1 h−1. The C2+OH STY can reach 195.1 mg gcat–1 h–1, and is well maintained within 200 h at higher GHSV of 24000 mL gcat−1 h−1. Introduction of K-CuZnAl and decrease of the contact distance of K-CuZnAl and Zr-CuFe boost the formation and subsequent conversion of CO* intermediate. In addition, doping small amounts of Zr into CuFe catalyst hinders the phase separation of Cu and Fe species by enhancing their interface interaction. As a result, the CHx * species generated on iron carbide through CO* dissociative activation quickly reacts with the non-dissociative adsorbed CO* on adjacent Cu to produce more C2+OH.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.