Sequential testing of hypotheses about drift for Gaussian diffusions

Q Mathematics Statistical Methodology Pub Date : 2016-12-01 DOI:10.1016/j.stamet.2016.07.002
David Stibůrek
{"title":"Sequential testing of hypotheses about drift for Gaussian diffusions","authors":"David Stibůrek","doi":"10.1016/j.stamet.2016.07.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>In statistical inference<span> on the drift parameter </span></span><span><math><mi>θ</mi></math></span> in the process <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>θ</mi><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>b</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mstyle><mi>d</mi></mstyle><msub><mrow><mi>W</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, where <span><math><mi>a</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math></span> and <span><math><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math></span><span><span> are known, deterministic functions, there is known a large number of options how to do it. We may, for example, base this inference on the differences between the observed values of the process at discrete times and their normality. Although such methods are very simple, it turns out that it is more appropriate to use sequential methods. For the </span>hypotheses testing about the drift parameter </span><span><math><mi>θ</mi></math></span><span>, it is more proper to standardize the observed process and to use sequential methods based on the first exit time of the observed process of a pre-specified interval until some given time. These methods can be generalized to the case of random part being a symmetric Itô integral or continuous symmetric martingale.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 14-30"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.07.002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In statistical inference on the drift parameter θ in the process Xt=θa(t)+0tb(s)dWs, where a(t) and b(t) are known, deterministic functions, there is known a large number of options how to do it. We may, for example, base this inference on the differences between the observed values of the process at discrete times and their normality. Although such methods are very simple, it turns out that it is more appropriate to use sequential methods. For the hypotheses testing about the drift parameter θ, it is more proper to standardize the observed process and to use sequential methods based on the first exit time of the observed process of a pre-specified interval until some given time. These methods can be generalized to the case of random part being a symmetric Itô integral or continuous symmetric martingale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯扩散漂移假设的序贯检验
在对漂移参数θ的统计推断过程中,Xt=θa(t)+∫0tb(s)dWs,其中a(t)和b(t)是已知的确定性函数,有大量已知的选择方法。例如,我们可以根据该过程在离散时间的观测值与其正态性之间的差异来作出这种推断。虽然这些方法非常简单,但事实证明,使用顺序方法更合适。对于漂移参数θ的假设检验,采用对观测过程进行标准化,并根据观测过程在预定区间内的第一次退出时间到某一给定时间的顺序方法更为合适。这些方法可以推广到随机部分为对称Itô积分或连续对称鞅的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
期刊最新文献
Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Validity of estimated prevalence of decreased kidney function and renal replacement therapy from primary care electronic health records compared with national survey and registry data in the United Kingdom. Editorial Board Nonparametric M-estimation for right censored regression model with stationary ergodic data Symmetric directional false discovery rate control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1