Non-parametric Bayesian inference for continuous density hidden Markov mixture model

Q Mathematics Statistical Methodology Pub Date : 2016-12-01 DOI:10.1016/j.stamet.2016.10.003
Najmeh Bathaee, Hamid Sheikhzadeh
{"title":"Non-parametric Bayesian inference for continuous density hidden Markov mixture model","authors":"Najmeh Bathaee,&nbsp;Hamid Sheikhzadeh","doi":"10.1016/j.stamet.2016.10.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a </span>Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the </span>Viterbi algorithm that increases the mixing rate.</p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"33 ","pages":"Pages 256-275"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2016.10.003","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312716300351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the Viterbi algorithm that increases the mixing rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
连续密度隐马尔可夫混合模型的非参数贝叶斯推理
本文提出了一种具有未知混合数的非参数连续密度隐马尔可夫混合模型(CDHMMix模型),用于序列的盲分割或聚类。在我们提出的模型中,hmm的发射分布被选择为高斯分布,具有全、对角或三对角协方差矩阵。我们应用贝叶斯方法来训练我们提出的模型,并使用蒙特卡洛马尔可夫链(MCMC)方法来驱动我们模型的推理。对于多元高斯发射,提出了一种保持协方差三对角结构的方法。此外,我们提出了一种基于Viterbi算法的hmm隐状态序列采样方法,提高了混合速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
期刊最新文献
Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Validity of estimated prevalence of decreased kidney function and renal replacement therapy from primary care electronic health records compared with national survey and registry data in the United Kingdom. Editorial Board Nonparametric M-estimation for right censored regression model with stationary ergodic data Symmetric directional false discovery rate control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1