Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-09-28 DOI:10.1016/j.jechem.2023.09.022
Xinyou He , Shilin Su , Bao Zhang , Zhiming Xiao , Zibo Zhang , Xing Ou
{"title":"Alleviating the anisotropic microstructural change and boosting the lithium ions diffusion by grain orientation regulation for Ni-rich cathode materials","authors":"Xinyou He ,&nbsp;Shilin Su ,&nbsp;Bao Zhang ,&nbsp;Zhiming Xiao ,&nbsp;Zibo Zhang ,&nbsp;Xing Ou","doi":"10.1016/j.jechem.2023.09.022","DOIUrl":null,"url":null,"abstract":"<div><p>Generally, layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles. While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes. The disordered particle arrangement is harmful to the cyclic performance and structural stability, yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified. Herein, we have designed three kinds of LiNi<sub>0.83</sub>Co<sub>0.06</sub>Mn<sub>0.11</sub>O<sub>2</sub> cathode materials with different primary particle orientations by regulating the precursor coprecipitation process. Combining finite element simulation and in-situ characterization, the Li<sup>+</sup> transport and structure evolution behaviors of different materials are unraveled. Specifically, the smooth Li<sup>+</sup> diffusion minimizes the reaction heterogeneity, homogenizes the phase transition within grains, and mitigates the anisotropic microstructural change, thereby modulating the crack evolution behavior. Meanwhile, the optimized structure evolution ensures radial tight junctions of the primary particles, enabling enhanced Li<sup>+</sup> diffusion during dynamic processes. Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance. This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 213-222"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005375","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles. While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes. The disordered particle arrangement is harmful to the cyclic performance and structural stability, yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified. Herein, we have designed three kinds of LiNi0.83Co0.06Mn0.11O2 cathode materials with different primary particle orientations by regulating the precursor coprecipitation process. Combining finite element simulation and in-situ characterization, the Li+ transport and structure evolution behaviors of different materials are unraveled. Specifically, the smooth Li+ diffusion minimizes the reaction heterogeneity, homogenizes the phase transition within grains, and mitigates the anisotropic microstructural change, thereby modulating the crack evolution behavior. Meanwhile, the optimized structure evolution ensures radial tight junctions of the primary particles, enabling enhanced Li+ diffusion during dynamic processes. Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance. This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富镍正极材料的晶粒取向调控减轻了各向异性组织变化,促进了锂离子的扩散
层状富镍正极材料通常表现为由大量初级颗粒组成的多晶次级球的形貌。而初生粒子的排列对富镍阴极的性能起着非常重要的作用。无序的颗粒排列不利于循环性能和结构稳定性,但无序结构对结构降解行为的基本认识尚不清楚。本文通过调节前驱体共沉淀过程,设计了三种不同初级颗粒取向的LiNi0.83Co0.06Mn0.11O2正极材料。结合有限元模拟和原位表征,揭示了不同材料的Li+输运和结构演化行为。具体来说,Li+的光滑扩散使反应的非均质性最小化,使晶粒内的相变均匀化,减缓了各向异性的组织变化,从而调节了裂纹演化行为。同时,优化的结构演变确保了原生颗粒的径向紧密连接,从而增强了Li+在动态过程中的扩散。闭环双向增强机制成为晶粒取向调控以稳定循环性能的关键。这种具有颗粒取向调控的前驱体工程为富镍层状阴极的结构设计和性能增强提供了有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1