The combination of NRF1 and Nrf2 activators in myoblasts stimulate mechanisms of proteostasis without changes in mitochondrial respiration

Maureen A. Walsh , Qian Zhang , Robert V. Musci , Karyn L. Hamilton
{"title":"The combination of NRF1 and Nrf2 activators in myoblasts stimulate mechanisms of proteostasis without changes in mitochondrial respiration","authors":"Maureen A. Walsh ,&nbsp;Qian Zhang ,&nbsp;Robert V. Musci ,&nbsp;Karyn L. Hamilton","doi":"10.1016/j.rimpes.2022.100001","DOIUrl":null,"url":null,"abstract":"<div><p>Persistent oxidative stress contributes to hallmarks of aging, including impaired proteostasis and mitochondrial dysfunction, while acute oxidative challenges resolved swiftly contribute to beneficial adaptations. Adaptive homeostasis is where acute exposures to sub-toxic stimuli kindle transient expansion of responses necessary to reestablish homeostasis. Elucidating mechanisms underlying adaptive homeostasis will provide novel targets for healthspan extension. Nuclear erythroid-related factor 2 (Nrf2) is a key regulator of cytoprotective gene transcription for redox homeostasis; nuclear respiratory factor 1 (NRF1) is a transcription factor that regulates expression of genes necessary for mitochondrial function. Regulation of both is compromised with advancing age. We hypothesized that NRF1 (NRF1a) and Nrf2 (Nrf2a) activators might improve adaptive homeostasis in C2C12 myoblasts by promoting mitochondrial proteome maintenance and function. Using stable isotope tracing, we assessed protein synthesis over a 16-hr treatment with NRF1a, Nrf2a, or both, with and without a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) stress. We assessed mitochondrial function using high-resolution respirometry. Co-treatment of NRF1a and Nrf2a under H<sub>2</sub>O<sub>2</sub> stress favored proteostatic maintenance (<em>p</em>&lt;0.05). H<sub>2</sub>O<sub>2</sub> stress decreased mitochondrial respiration and this decrease was not altered by NRF1a/Nrf2a co-treatment. These results suggest that simultaneously targeting Nrf2 and NRF1 may be a viable approach for reestablishing mitochondrial protein homeostasis following a stress, but that this adaptation may not improve respiratory capacity.</p></div>","PeriodicalId":101066,"journal":{"name":"Redox in Muscle Physiology, Exercise, and Sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277262312200001X/pdfft?md5=a01805d75743486da45a1fa16ea6eed7&pid=1-s2.0-S277262312200001X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox in Muscle Physiology, Exercise, and Sport","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277262312200001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent oxidative stress contributes to hallmarks of aging, including impaired proteostasis and mitochondrial dysfunction, while acute oxidative challenges resolved swiftly contribute to beneficial adaptations. Adaptive homeostasis is where acute exposures to sub-toxic stimuli kindle transient expansion of responses necessary to reestablish homeostasis. Elucidating mechanisms underlying adaptive homeostasis will provide novel targets for healthspan extension. Nuclear erythroid-related factor 2 (Nrf2) is a key regulator of cytoprotective gene transcription for redox homeostasis; nuclear respiratory factor 1 (NRF1) is a transcription factor that regulates expression of genes necessary for mitochondrial function. Regulation of both is compromised with advancing age. We hypothesized that NRF1 (NRF1a) and Nrf2 (Nrf2a) activators might improve adaptive homeostasis in C2C12 myoblasts by promoting mitochondrial proteome maintenance and function. Using stable isotope tracing, we assessed protein synthesis over a 16-hr treatment with NRF1a, Nrf2a, or both, with and without a hydrogen peroxide (H2O2) stress. We assessed mitochondrial function using high-resolution respirometry. Co-treatment of NRF1a and Nrf2a under H2O2 stress favored proteostatic maintenance (p<0.05). H2O2 stress decreased mitochondrial respiration and this decrease was not altered by NRF1a/Nrf2a co-treatment. These results suggest that simultaneously targeting Nrf2 and NRF1 may be a viable approach for reestablishing mitochondrial protein homeostasis following a stress, but that this adaptation may not improve respiratory capacity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NRF1和Nrf2激活因子在成肌细胞中的结合刺激蛋白静止的机制,而不改变线粒体呼吸
持续的氧化应激有助于衰老的特征,包括蛋白质平衡受损和线粒体功能障碍,而迅速解决急性氧化挑战有助于有益的适应。适应性内稳态是指急性暴露于亚毒性刺激下,会引发重建内稳态所必需的短暂反应扩张。阐明适应性内平衡机制将为延长健康寿命提供新的靶点。核红细胞相关因子2 (Nrf2)是细胞保护基因转录调控氧化还原稳态的关键调控因子;核呼吸因子1 (NRF1)是一种调节线粒体功能所需基因表达的转录因子。随着年龄的增长,这两方面的调节都受到了损害。我们假设NRF1 (NRF1a)和Nrf2 (Nrf2a)激活剂可能通过促进线粒体蛋白质组的维持和功能来改善C2C12成肌细胞的适应性稳态。利用稳定同位素示踪,我们评估了NRF1a、Nrf2a或两者在有和没有过氧化氢(H2O2)胁迫下处理16小时后的蛋白质合成。我们使用高分辨率呼吸仪评估线粒体功能。在H2O2胁迫下,NRF1a和Nrf2a共同处理有利于蛋白酶的维持(p<0.05)。H2O2胁迫降低了线粒体呼吸,NRF1a/Nrf2a共处理未改变这种降低。这些结果表明,同时靶向Nrf2和NRF1可能是在应激后重建线粒体蛋白稳态的可行方法,但这种适应可能无法改善呼吸能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In Memoriam: Emeritus Professor Robin L. Willson The combination of NRF1 and Nrf2 activators in myoblasts stimulate mechanisms of proteostasis without changes in mitochondrial respiration Carbohydrate Metabolism During Exercise The Coupling of Internal and External Gas Exchange During Exercise Front-matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1