Sourav Chatterjee, Thomas K. Houlding, Valentin Yu. Doluda, Vladimir P. Molchanov, Valentina G. Matveeva, Evgeny V. Rebrov*
{"title":"Thermal Behavior of a Catalytic Packed-Bed Milli-reactor Operated under Radio Frequency Heating","authors":"Sourav Chatterjee, Thomas K. Houlding, Valentin Yu. Doluda, Vladimir P. Molchanov, Valentina G. Matveeva, Evgeny V. Rebrov*","doi":"10.1021/acs.iecr.7b01723","DOIUrl":null,"url":null,"abstract":"<p >An approach for analysis of thermal gradients in a catalytic packed bed milli-reactor operated under radio frequency (RF) heating has been presented. A single-point temperature measurement would cause the misinterpretation of the catalytic activity in an RF-heated reactor, because of the presence of a temperature gradient. For reliable data interpretation, the temperature should be measured at three positions along the reactor length. The temperature profile can be accurately estimated with the exact analytical solution of a one-dimensional (1D) convection and conduction heat-transfer model, and it can also be approximated with a second-order polynomial function. The results revealed that the position of maximum temperature in the catalytic bed shifts toward a downstream location as the flow rate increases. The relative contribution of conduction and convection to the overall heat transport has been discussed. The design criteria for a near-isothermal milli-reactor have been suggested.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"56 45","pages":"13273–13280"},"PeriodicalIF":3.9000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.iecr.7b01723","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.7b01723","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 5
Abstract
An approach for analysis of thermal gradients in a catalytic packed bed milli-reactor operated under radio frequency (RF) heating has been presented. A single-point temperature measurement would cause the misinterpretation of the catalytic activity in an RF-heated reactor, because of the presence of a temperature gradient. For reliable data interpretation, the temperature should be measured at three positions along the reactor length. The temperature profile can be accurately estimated with the exact analytical solution of a one-dimensional (1D) convection and conduction heat-transfer model, and it can also be approximated with a second-order polynomial function. The results revealed that the position of maximum temperature in the catalytic bed shifts toward a downstream location as the flow rate increases. The relative contribution of conduction and convection to the overall heat transport has been discussed. The design criteria for a near-isothermal milli-reactor have been suggested.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.