E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2024-03-01 Epub Date: 2023-11-18 DOI:10.1007/s00335-023-10027-y
Yangzi Yu, Qiang Fu, Jiarui Li, Xianming Zen, Jing Li
{"title":"E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury.","authors":"Yangzi Yu, Qiang Fu, Jiarui Li, Xianming Zen, Jing Li","doi":"10.1007/s00335-023-10027-y","DOIUrl":null,"url":null,"abstract":"<p><p>CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-023-10027-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E3泛素连接酶cop1介导的CEBPB泛素化调节脓毒症诱导心肌损伤中巨噬细胞的炎症反应。
CCAAT/增强子结合蛋白β (CEBPB)与败血症有关。然而,其在脓毒症引起的心肌损伤(SIMI)中的作用仍不明确。本研究旨在说明CEBPB在SIMI及其上游修饰剂中的作用。从GEO数据集中下载了发生多微生物脓毒症的小鼠心脏活检的转录组变化,用于KEGG富集分析。在SIMI小鼠心肌组织中,TNF信号通路上的CEBPB显著增强。CEBPB下调可减轻SIMI,表现为轻微的心肌损伤和炎症表现。此外,组成型光形态发生蛋白1同源物(COP1)对CEBPB的泛素化修饰导致CEBPB降解并抑制巨噬细胞的炎症反应。在CEBPB过表达小鼠中,COP1的上调对SIMI有保护作用。总之,我们的研究结果表明,COP1通过对CEBPB的泛素化修饰来保护心脏免受SIMI的侵害,这可能是未来一种新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Genes related to microglia polarization and immune infiltration in Alzheimer's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1