首页 > 最新文献

Mammalian Genome最新文献

英文 中文
Identification of biomarkers associated with phagocytosis regulatory factors in coronary artery disease using machine learning and network analysis.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-14 DOI: 10.1007/s00335-025-10111-5
Runan Jia, Zhiya Li, Yingying Du, Huixian Liu, Ruirui Liang

Background: Coronary artery disease (CAD) is the leading cause of death worldwide, and aberrant phagocytosis may be involved in its development. Understanding this aspect may provide new avenues for prompt CAD diagnosis.

Methods: CAD-related information was obtained from Gene Expression Omnibus datasets GSE66360, GSE113079, and GSE59421. We identified 995 upregulated and 1086 downregulated differentially expressed genes (DEGs) in GSE66360. Weighted gene co-expression network analysis revealed a module of 503 genes relevant to CAD. Using clusterProfiler, we revealed 32 CAD-related PRFs. Eight candidate genes were identified in a protein-protein interaction network. Machine learning algorithms identified CAD biomarkers that underwent gene set enrichment analysis, immune cell analysis with CIBERSORT, microRNA (miRNA) prediction using the miRWalk database, transcription factor (TF) level predication through ChEA3, and drug prediction with DGIdb. Cytoscape visualized the miRNA -mRNA- TF, miRNA-single nucleotide polymorphism-mRNA, and biomarker-drug networks.

Results: IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK were identified as CAD biomarkers. The area under the curve of a diagnostic model based on the six biomarkers was > 0.7 for the GSE66360 and GSE113079 datasets. Gene set enrichment analysis revealed differences in their biological pathways. CIBERSORT revealed that 10 immune cell types were differentially expressed between the CAD and control groups. The TF-mRNA-miRNA network showed that has-miR-1207-5p regulates HCK and FCER1G expression and that RUNX1 and SPI may be important TFs. Ninety-five drugs were predicted, including aspirin, which influenced ILIB and FCERIG.

Conclusion: In this study, six biomarkers (IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK) related to CAD phagocytic regulatory factors were identified, and their expression regulatory relationships in CAD were further studied, providing a deeper understanding of the pathogenesis, diagnosis, and potential treatment strategies of CAD.

{"title":"Identification of biomarkers associated with phagocytosis regulatory factors in coronary artery disease using machine learning and network analysis.","authors":"Runan Jia, Zhiya Li, Yingying Du, Huixian Liu, Ruirui Liang","doi":"10.1007/s00335-025-10111-5","DOIUrl":"https://doi.org/10.1007/s00335-025-10111-5","url":null,"abstract":"<p><strong>Background: </strong>Coronary artery disease (CAD) is the leading cause of death worldwide, and aberrant phagocytosis may be involved in its development. Understanding this aspect may provide new avenues for prompt CAD diagnosis.</p><p><strong>Methods: </strong>CAD-related information was obtained from Gene Expression Omnibus datasets GSE66360, GSE113079, and GSE59421. We identified 995 upregulated and 1086 downregulated differentially expressed genes (DEGs) in GSE66360. Weighted gene co-expression network analysis revealed a module of 503 genes relevant to CAD. Using clusterProfiler, we revealed 32 CAD-related PRFs. Eight candidate genes were identified in a protein-protein interaction network. Machine learning algorithms identified CAD biomarkers that underwent gene set enrichment analysis, immune cell analysis with CIBERSORT, microRNA (miRNA) prediction using the miRWalk database, transcription factor (TF) level predication through ChEA3, and drug prediction with DGIdb. Cytoscape visualized the miRNA -mRNA- TF, miRNA-single nucleotide polymorphism-mRNA, and biomarker-drug networks.</p><p><strong>Results: </strong>IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK were identified as CAD biomarkers. The area under the curve of a diagnostic model based on the six biomarkers was > 0.7 for the GSE66360 and GSE113079 datasets. Gene set enrichment analysis revealed differences in their biological pathways. CIBERSORT revealed that 10 immune cell types were differentially expressed between the CAD and control groups. The TF-mRNA-miRNA network showed that has-miR-1207-5p regulates HCK and FCER1G expression and that RUNX1 and SPI may be important TFs. Ninety-five drugs were predicted, including aspirin, which influenced ILIB and FCERIG.</p><p><strong>Conclusion: </strong>In this study, six biomarkers (IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK) related to CAD phagocytic regulatory factors were identified, and their expression regulatory relationships in CAD were further studied, providing a deeper understanding of the pathogenesis, diagnosis, and potential treatment strategies of CAD.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-12 DOI: 10.1007/s00335-025-10110-6
Sai Bhavani Gottumukkala, Anbumathi Palanisamy

Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.

{"title":"Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators.","authors":"Sai Bhavani Gottumukkala, Anbumathi Palanisamy","doi":"10.1007/s00335-025-10110-6","DOIUrl":"https://doi.org/10.1007/s00335-025-10110-6","url":null,"abstract":"<p><p>Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143408888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Canine models of inherited retinal diseases: from neglect to well-recognized translational value.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-11 DOI: 10.1007/s00335-025-10108-0
Valérie L Dufour, Gustavo D Aguirre
{"title":"Correction: Canine models of inherited retinal diseases: from neglect to well-recognized translational value.","authors":"Valérie L Dufour, Gustavo D Aguirre","doi":"10.1007/s00335-025-10108-0","DOIUrl":"https://doi.org/10.1007/s00335-025-10108-0","url":null,"abstract":"","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishing the hybrid rat diversity program: a resource for dissecting complex traits.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-05 DOI: 10.1007/s00335-024-10102-y
M R Dwinell, A Takizawa, M Tutaj, L Malloy, R Schilling, A Endsley, W M Demos, J R Smith, S J Wang, J De Pons, A Kundurthi, A M Geurts, A E Kwitek

Rat models have been a major model for studying complex disease mechanisms, behavioral phenotypes, environmental factors, and for drug development and discovery. Inbred rat strains control for genetic background and allow for repeated, reproducible, cellular and whole animal phenotyping. The Hybrid Rat Diversity Panel (HRDP) was designed to be a powerful panel of inbred rats with genomic, physiological, and behavioral data to serve as a resource for systems genetics. The HRDP consists of 96-98 inbred rat strains aimed to maximize power to detect specific genetic loci associated with complex traits while maximizing the genetic diversity among strains. The panel consists of 32-34 genetically diverse inbred strains and two panels of recombinant inbred panels. To establish the HRDP program, embryo resuscitation and breeding were done to establish colonies for distribution. Whole genome sequencing was performed to achieve 30X coverage. Genomic, phenotype, and strain information is available through the Hybrid Rat Diversity Panel Portal at the Rat Genome Database ( http://rgd.mcw.edu ).

{"title":"Establishing the hybrid rat diversity program: a resource for dissecting complex traits.","authors":"M R Dwinell, A Takizawa, M Tutaj, L Malloy, R Schilling, A Endsley, W M Demos, J R Smith, S J Wang, J De Pons, A Kundurthi, A M Geurts, A E Kwitek","doi":"10.1007/s00335-024-10102-y","DOIUrl":"10.1007/s00335-024-10102-y","url":null,"abstract":"<p><p>Rat models have been a major model for studying complex disease mechanisms, behavioral phenotypes, environmental factors, and for drug development and discovery. Inbred rat strains control for genetic background and allow for repeated, reproducible, cellular and whole animal phenotyping. The Hybrid Rat Diversity Panel (HRDP) was designed to be a powerful panel of inbred rats with genomic, physiological, and behavioral data to serve as a resource for systems genetics. The HRDP consists of 96-98 inbred rat strains aimed to maximize power to detect specific genetic loci associated with complex traits while maximizing the genetic diversity among strains. The panel consists of 32-34 genetically diverse inbred strains and two panels of recombinant inbred panels. To establish the HRDP program, embryo resuscitation and breeding were done to establish colonies for distribution. Whole genome sequencing was performed to achieve 30X coverage. Genomic, phenotype, and strain information is available through the Hybrid Rat Diversity Panel Portal at the Rat Genome Database ( http://rgd.mcw.edu ).</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-04 DOI: 10.1007/s00335-025-10109-z
Mahanthi Vasu, Sonika Ahlawat, Reena Arora, Rekha Sharma

Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.

开士米羊绒又称帕什米娜(pashmina),是从开士米羊绒/长滩羊的次级毛囊中提取的。羊绒被誉为世界上最奢华的天然纤维,在纺织业中具有重要的经济价值。本综述加深了我们对支配羊绒/巴什米纳纤维发育和质量的复杂生物过程的了解,从而推动了选择性育种和纤维增强策略的发展。综述特别研究了影响纤维发育的分子决定因素,重点是角蛋白(KRTs)和角蛋白相关蛋白(KRTAPs)。报告还探讨了关键分子通路的作用,包括 Wnt、Notch、BMP、NF-kappa B、VEGF、cAMP、PI3K-Akt、ECM、细胞粘附、刺猬、MAPK、Ras、JAK-STAT、TGF-β、mTOR、黑色素生成、FoxO、Hippo 和 Rap1 信号转导。通过了解这些错综复杂的分子级联,我们可以深入了解毛囊生长的协调机制,从而进一步推动这种令人垂涎的天然纤维的生物学研究。扩展多组学方法将提高育种精度,并加深我们对影响羊绒生产的分子途径的了解。未来的研究应解决关键的差距,如环境因素的影响、表观遗传修饰和遗传变异的功能研究。育种者、研究人员和决策者之间的合作对于将基因组学的进步转化为实际应用至关重要。这些努力可以促进可持续发展的实践,保护生物多样性,并确保高品质羊绒生产的长期可行性。将基因洞察力与保护战略相结合,将有助于羊绒产业的可持续发展,同时保护其经济和生态价值。
{"title":"Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review.","authors":"Mahanthi Vasu, Sonika Ahlawat, Reena Arora, Rekha Sharma","doi":"10.1007/s00335-025-10109-z","DOIUrl":"https://doi.org/10.1007/s00335-025-10109-z","url":null,"abstract":"<p><p>Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide study for signatures of selection identifies genomic regions and candidate genes associated with milk traits in sheep.
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-04 DOI: 10.1007/s00335-025-10107-1
Fatemeh Ebrahimi, Mohsen Gholizadeh, Hamid Sahebalam

Milk production traits in sheep are influenced by complex genetic factors, and understanding these traits requires the identification of candidate genes under selection. This study employed two methods, FST and XP-EHH, to identify selection signatures and candidate genes associated with milk production traits in sheep. For this purpose, 9 different breeds from the Sheep HapMap dataset generated by the International Sheep Genomics Consortium (ISGC) based on analysis of the Ovine SNP50 BeadChip were used. The dairy breeds included Brown East Friesian (n = 39), Milk Lacaune (n = 103), Chios (n = 23), Churra (n = 120), and Comisana (n = 24), while the non-dairy breeds included Afshari (n = 37), Moghani (n = 34), Galway (n = 49), and Australian Suffolk (n = 109). Genomic regions in the top 0.1 percentile of FST values revealed 71 genes, while regions with the highest positive XP-EHH values identified 69 genes. Five overlapping genes-DHRS3, TNFRSF1B, AADACL4, ARHGEF11, and LRRC71-were detected by both methods, highlighting their relevance to milk production. Several candidate genes in regions identified from FST, such as PER2, SH3PXD2A, TMEM117, DDX6, PDCD11, CALHM2, and CALHM3, have been previously associated with milk production traits. Notably, CRABP2, PEAR1, PGM1, ALG6, COX15, and OAT were identified in regions with high XP-EHH values in the dairy group. Gene ontology analysis indicated that the identified genes are enriched in pathways related to chemokine receptor activity, gap junction channel activity, and gap junction-mediated intercellular transport, as well as cellular components like the connexin complex. Further studies on these genes may improve understanding of the genetic architecture of milk production traits in sheep.

{"title":"Genome-wide study for signatures of selection identifies genomic regions and candidate genes associated with milk traits in sheep.","authors":"Fatemeh Ebrahimi, Mohsen Gholizadeh, Hamid Sahebalam","doi":"10.1007/s00335-025-10107-1","DOIUrl":"https://doi.org/10.1007/s00335-025-10107-1","url":null,"abstract":"<p><p>Milk production traits in sheep are influenced by complex genetic factors, and understanding these traits requires the identification of candidate genes under selection. This study employed two methods, FST and XP-EHH, to identify selection signatures and candidate genes associated with milk production traits in sheep. For this purpose, 9 different breeds from the Sheep HapMap dataset generated by the International Sheep Genomics Consortium (ISGC) based on analysis of the Ovine SNP50 BeadChip were used. The dairy breeds included Brown East Friesian (n = 39), Milk Lacaune (n = 103), Chios (n = 23), Churra (n = 120), and Comisana (n = 24), while the non-dairy breeds included Afshari (n = 37), Moghani (n = 34), Galway (n = 49), and Australian Suffolk (n = 109). Genomic regions in the top 0.1 percentile of FST values revealed 71 genes, while regions with the highest positive XP-EHH values identified 69 genes. Five overlapping genes-DHRS3, TNFRSF1B, AADACL4, ARHGEF11, and LRRC71-were detected by both methods, highlighting their relevance to milk production. Several candidate genes in regions identified from FST, such as PER2, SH3PXD2A, TMEM117, DDX6, PDCD11, CALHM2, and CALHM3, have been previously associated with milk production traits. Notably, CRABP2, PEAR1, PGM1, ALG6, COX15, and OAT were identified in regions with high XP-EHH values in the dairy group. Gene ontology analysis indicated that the identified genes are enriched in pathways related to chemokine receptor activity, gap junction channel activity, and gap junction-mediated intercellular transport, as well as cellular components like the connexin complex. Further studies on these genes may improve understanding of the genetic architecture of milk production traits in sheep.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary: towards a national research infrastructure strategy for preclinical biological models in Australia. 评论:朝着澳大利亚临床前生物学模型的国家研究基础设施战略。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1007/s00335-024-10103-x
James E Hennessy, Sarah Nisbet, Michael S Dobbie

Research infrastructure is critical for advancing knowledge of health and disease, fostering innovation through world-class, cutting-edge facilities and technical expertise. Phenomics Australia is Australia's national research infrastructure provider responsible for accelerating advances in mammalian functional genomics and precision medicine through the development and delivery of services and expertise in engineered disease model production, phenotyping, and biobanking. These capabilities and resources are enabled by Australia's National Collaborative Research Infrastructure Strategy and primarily support health and medical research for significant healthcare and economic benefits. Priorities identified in the Australian Government's 2021 National Research Infrastructure Roadmap include the development and expansion of capabilities in digital research infrastructure, improved research translation, and enhanced management of biological collections, which are strongly aligned with Phenomics Australia's strategy to develop and enable access to high-quality national genetics resources at scale. Here, we comment on Phenomics Australia's response to these national strategy imperatives and the critical role of preclinical biological models research infrastructure in Australia.

研究基础设施对于增进健康和疾病知识、通过世界一流的尖端设施和技术专长促进创新至关重要。澳大利亚表型组学是澳大利亚国家研究基础设施提供商,负责通过开发和提供工程疾病模型生产、表型分析和生物银行方面的服务和专业知识,加速哺乳动物功能基因组学和精准医学的进步。这些能力和资源是由澳大利亚国家合作研究基础设施战略提供的,主要支持卫生和医学研究,以获得重大的医疗保健和经济效益。澳大利亚政府2021年国家研究基础设施路线图确定的优先事项包括发展和扩大数字研究基础设施的能力,改进研究翻译,加强生物收集管理,这与澳大利亚表型组学公司大规模开发和获取高质量国家遗传资源的战略高度一致。在这里,我们评论了澳大利亚表型组学对这些国家战略要求的反应,以及澳大利亚临床前生物学模型研究基础设施的关键作用。
{"title":"Commentary: towards a national research infrastructure strategy for preclinical biological models in Australia.","authors":"James E Hennessy, Sarah Nisbet, Michael S Dobbie","doi":"10.1007/s00335-024-10103-x","DOIUrl":"https://doi.org/10.1007/s00335-024-10103-x","url":null,"abstract":"<p><p>Research infrastructure is critical for advancing knowledge of health and disease, fostering innovation through world-class, cutting-edge facilities and technical expertise. Phenomics Australia is Australia's national research infrastructure provider responsible for accelerating advances in mammalian functional genomics and precision medicine through the development and delivery of services and expertise in engineered disease model production, phenotyping, and biobanking. These capabilities and resources are enabled by Australia's National Collaborative Research Infrastructure Strategy and primarily support health and medical research for significant healthcare and economic benefits. Priorities identified in the Australian Government's 2021 National Research Infrastructure Roadmap include the development and expansion of capabilities in digital research infrastructure, improved research translation, and enhanced management of biological collections, which are strongly aligned with Phenomics Australia's strategy to develop and enable access to high-quality national genetics resources at scale. Here, we comment on Phenomics Australia's response to these national strategy imperatives and the critical role of preclinical biological models research infrastructure in Australia.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CTNNB1 syndrome mouse models. CTNNB1综合征小鼠模型。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1007/s00335-025-10105-3
Duško Lainšček, Vida Forstnerič, Špela Miroševič

CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.

CTNNB1综合征是一种罕见的神经发育障碍,影响全球儿童,患病率为每10万新生儿2.6-3.2例,经常被误诊为脑瘫。Ctnnb1基因的新生功能缺失突变导致β-连环蛋白功能障碍,破坏典型的Wnt信号通路,而Wnt信号通路在细胞增殖、分化和组织稳态中起关键作用。此外,这些突变破坏细胞连接的形成,对组织结构产生不利影响。运动和语言缺陷、认知障碍、心血管和视力问题只是CTNNB1综合征患者出现的一些关键症状。目前对CTNNB1综合征患者没有有效的治疗选择,支持主要集中在症状管理和物理治疗上,但最近正在开发一些治疗方法。动物实验在新药开发过程中仍然是至关重要的,而小鼠模型尤为重要。这些模型为研究人员提供了对疾病机制的新认识,对于测试潜在治疗方法的有效性和安全性具有不可估量的价值。各种具有β-连环蛋白缺失和功能获得突变的小鼠模型的开发成功地复制了智力残疾、自闭症样行为、运动缺陷等的关键特征。这些模型为研究疾病机制提供了有价值的平台,为测试新药的治疗潜力和有效性提供了有力的工具,为未来的临床试验铺平了道路。
{"title":"CTNNB1 syndrome mouse models.","authors":"Duško Lainšček, Vida Forstnerič, Špela Miroševič","doi":"10.1007/s00335-025-10105-3","DOIUrl":"https://doi.org/10.1007/s00335-025-10105-3","url":null,"abstract":"<p><p>CTNNB1 syndrome is a rare neurodevelopmental disorder, affecting children worldwide with a prevalence of 2.6-3.2 per 100,000 births and often misdiagnosed as cerebral palsy. De novo loss-of-function mutations in the Ctnnb1 gene result in dysfunction of the β-catenin protein, disrupting the canonical Wnt signaling pathway, which plays a key role in cell proliferation, differentiation, and tissue homeostasis. Additionally, these mutations impair the formation of cell junctions, adversely affecting tissue architecture. Motor and speech deficits, cognitive impairment, cardiovascular and visual problems are just some of the key symptoms that occur in CTNNB1 syndrome patients. There is currently no effective treatment option available for patients with CTNNB1 syndrome, with support largely focused on the management of symptoms and physiotherapy, yet recently some therapeutic approaches are being developed. Animal testing is still crucial in the process of new drug development, and mouse models are particularly important. These models provide researchers with new understanding of the disease mechanisms and are invaluable for testing the efficacy and safety of potential treatments. The development of various mouse models with β-catenin loss- and gain-of-function mutations successfully replicates key features of intellectual disability, autism-like behaviors, motor deficits, and more. These models provide a valuable platform for studying disease mechanisms and offer a powerful tool for testing the therapeutic potential and effectiveness of new drug candidates, paving the way for future clinical trials.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a critical interval for type 2 diabetes QTL on chromosome 4 in DDD-Ay mice. DDD-Ay小鼠4号染色体上2型糖尿病QTL关键区间的鉴定
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-20 DOI: 10.1007/s00335-025-10106-2
Jun-Ichi Suto, Misaki Kojima

Type 2 diabetes mellitus (T2D) in male KK-Ay and B6-Ay mice is typically associated with hyperinsulinemia, whereas male DDD-Ay mice exhibit a marked decrease in circulating insulin levels due to the loss of pancreatic islet β-cells. T2D in male DDD-Ay mice is linked to Nidd/DDD, a significant quantitative trait locus (QTL) mapped with a 95% confidence interval (CI) between 112.44 and 151.47 Mbp on chromosome 4. Several T2D QTLs involving Nidd/SJL and Nidd/DBA have been identified on this chromosome; however, their allelic relationships remain unclear. In this study, two sets of male F2-Ay mice produced by crossing C57BL/6J and DDD-Ay mice, and C3H/HeJ and DDD-Ay mice, were used to narrow the 95% CI of the Nidd/DDD to a 9.4 Mbp interval between 114.65 and 125.05 Mbp. Candidate genes underlying Nidd/DDD were identified, assuming that the causative variant is a nonsynonymous single nucleotide variant (nsSNV). The analysis identified 48 potential candidate nsSNVs unique to DDD-Ay mice compared to those in KK, B6, C3H, and DBA mice. Among these nsSNVs, 18 were identified in olfactory receptor genes, which have recently been implicated in the pathogenesis of T2D. The 9.4 Mbp region also contained Zfp69, a potential causative gene for Nidd/SJL, suggesting that Nidd/DDD could be allelic to Nidd/SJL but not to Nidd/DBA. In summary, the findings of this study provide insights into the allelic relationships between T2D QTLs on murine chromosome 4 and their underlying causative genetic variations.

雄性KK-Ay和B6-Ay小鼠的2型糖尿病(T2D)通常与高胰岛素血症相关,而雄性DDD-Ay小鼠由于胰岛β细胞的损失而表现出循环胰岛素水平的显着降低。雄性DDD- ay小鼠的T2D与Nidd/DDD相关,Nidd/DDD是4号染色体上一个重要的数量性状位点(QTL), 95%可信区间(CI)为112.44 ~ 151.47 Mbp。在该染色体上发现了几个涉及Nidd/SJL和Nidd/DBA的T2D qtl;然而,他们的等位基因关系尚不清楚。本研究利用C57BL/6J与DDD- ay小鼠杂交产生的两组雄性F2-Ay小鼠,以及C3H/HeJ与DDD- ay小鼠杂交产生的两组雄性F2-Ay小鼠,将Nidd/DDD的95% CI缩小到114.65 ~ 125.05 Mbp之间的9.4 Mbp区间。假设Nidd/DDD的致病变异是一种非同义单核苷酸变异(nsSNV),确定了Nidd/DDD的候选基因。与KK、B6、C3H和DBA小鼠相比,该分析确定了DDD-Ay小鼠特有的48种潜在候选nssnv。在这些nssnv中,有18个在嗅觉受体基因中被发现,这些基因最近被认为与T2D的发病机制有关。该区域还含有Nidd/SJL的潜在致病基因Zfp69,提示Nidd/DDD可能与Nidd/SJL等位,而与Nidd/DBA不等位。总之,本研究的发现为小鼠4号染色体上的T2D qtl及其潜在的致病遗传变异之间的等位基因关系提供了见解。
{"title":"Identification of a critical interval for type 2 diabetes QTL on chromosome 4 in DDD-A<sup>y</sup> mice.","authors":"Jun-Ichi Suto, Misaki Kojima","doi":"10.1007/s00335-025-10106-2","DOIUrl":"https://doi.org/10.1007/s00335-025-10106-2","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2D) in male KK-A<sup>y</sup> and B6-A<sup>y</sup> mice is typically associated with hyperinsulinemia, whereas male DDD-A<sup>y</sup> mice exhibit a marked decrease in circulating insulin levels due to the loss of pancreatic islet β-cells. T2D in male DDD-A<sup>y</sup> mice is linked to Nidd/DDD, a significant quantitative trait locus (QTL) mapped with a 95% confidence interval (CI) between 112.44 and 151.47 Mbp on chromosome 4. Several T2D QTLs involving Nidd/SJL and Nidd/DBA have been identified on this chromosome; however, their allelic relationships remain unclear. In this study, two sets of male F<sub>2</sub>-A<sup>y</sup> mice produced by crossing C57BL/6J and DDD-A<sup>y</sup> mice, and C3H/HeJ and DDD-A<sup>y</sup> mice, were used to narrow the 95% CI of the Nidd/DDD to a 9.4 Mbp interval between 114.65 and 125.05 Mbp. Candidate genes underlying Nidd/DDD were identified, assuming that the causative variant is a nonsynonymous single nucleotide variant (nsSNV). The analysis identified 48 potential candidate nsSNVs unique to DDD-A<sup>y</sup> mice compared to those in KK, B6, C3H, and DBA mice. Among these nsSNVs, 18 were identified in olfactory receptor genes, which have recently been implicated in the pathogenesis of T2D. The 9.4 Mbp region also contained Zfp69, a potential causative gene for Nidd/SJL, suggesting that Nidd/DDD could be allelic to Nidd/SJL but not to Nidd/DBA. In summary, the findings of this study provide insights into the allelic relationships between T2D QTLs on murine chromosome 4 and their underlying causative genetic variations.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. 顺式- sqtl的鉴定证明了内洛雷牛肌肉组织炎症过程的遗传关联和功能意义。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-18 DOI: 10.1007/s00335-024-10100-0
Thaís Cristina Ferreira Dos Santos, Evandro Neves Silva, Gabriela Bonfá Frezarim, Bruna Maria Salatta, Fernando Baldi, Larissa Fernanda Simielli Fonseca, Lucia Galvão De Albuquerque, Maria Malane Magalhães Muniz, Danielly Beraldo Dos Santos Silva

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.

本研究旨在鉴定牛肌肉组织剪接数量性状位点(cis-sQTL),并探讨剪接基因(sGenes)在免疫系统相关生物学过程中的作用。利用SNP-Chip技术获得了80头完整雄性Nelore牛的基因型数据,并通过RNA-Seq分析测量了基因表达水平,实现了基因组和转录组数据集的整合。通过使用MatrixEQTL软件包的加性线性模型进行方差分析,剪接转录本的标准化表达水平与单核苷酸多态性(snp)相关。然后进行排列分析,评估每个剪接转录本的最佳snp的重要性。对sGenes进行功能富集分析,探讨其在免疫系统中的作用。总共有3187个变异与3202个剪接转录物相关联,其中83个基因与免疫系统过程有关。其中31个sGenes富集了5个转录因子。大多数顺式sQTL效应发现于内含子区域,27个sQTL变异与牛的疾病易感性和抗性相关。鉴定出的关键基因,如GSDMA、NLRP6、CASP6、GZMA、CASP4、CASP1、TREM2、NLRP1和NAIP,与炎性小体形成和焦亡有关。此外,PIDD1、OPTN、NFKBIB、STAT1、TNIP3和TREM2等基因参与调节NF-kB通路。这些发现为培育抗病牛奠定了基础,并增强了我们对免疫反应遗传机制的理解。
{"title":"Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue.","authors":"Thaís Cristina Ferreira Dos Santos, Evandro Neves Silva, Gabriela Bonfá Frezarim, Bruna Maria Salatta, Fernando Baldi, Larissa Fernanda Simielli Fonseca, Lucia Galvão De Albuquerque, Maria Malane Magalhães Muniz, Danielly Beraldo Dos Santos Silva","doi":"10.1007/s00335-024-10100-0","DOIUrl":"https://doi.org/10.1007/s00335-024-10100-0","url":null,"abstract":"<p><p>This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mammalian Genome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1