{"title":"On statistical inference with high-dimensional sparse CCA.","authors":"Nilanjana Laha, Nathan Huey, Brent Coull, Rajarshi Mukherjee","doi":"10.1093/imaiai/iaad040","DOIUrl":null,"url":null,"abstract":"<p><p>We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"12 4","pages":"iaad040"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider asymptotically exact inference on the leading canonical correlation directions and strengths between two high-dimensional vectors under sparsity restrictions. In this regard, our main contribution is developing a novel representation of the Canonical Correlation Analysis problem, based on which one can operationalize a one-step bias correction on reasonable initial estimators. Our analytic results in this regard are adaptive over suitable structural restrictions of the high-dimensional nuisance parameters, which, in this set-up, correspond to the covariance matrices of the variables of interest. We further supplement the theoretical guarantees behind our procedures with extensive numerical studies.