Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae

IF 24.5 1区 生物学 Q1 MYCOLOGY Fungal Diversity Pub Date : 2023-11-20 DOI:10.1007/s13225-023-00526-3
Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog
{"title":"Dermatophytes and mammalian hair: aspects of the evolution of Arthrodermataceae","authors":"Chao Tang, Xin Zhou, Jacques Guillot, Gudrun Wibbelt, Shuwen Deng, Hazal Kandemir, Yvonne Gräser, Peiying Feng, Yingqian Kang, G. Sybren de Hoog","doi":"10.1007/s13225-023-00526-3","DOIUrl":null,"url":null,"abstract":"<p>Dermatophytes and other members of <i>Onygenales</i> are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3–7 are specific for dermatophytes. <i>eIF2α</i> kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 <i>g</i>enes provide a reasonably correct reflection of the evolution of <i>Arthrodermataceae</i>. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. <i>Trichophyton mentagrophytes</i> and <i>Nannizzia gypsea</i> were the most active in degrading hair, while <i>Trichophyton verrucosum</i>, <i>Trichophyton tonsurans</i> and <i>Epidermophyton floccosum</i> showed low response. Hairs of <i>Hyracoidea</i> and <i>Rodentia</i> were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"138 1","pages":""},"PeriodicalIF":24.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13225-023-00526-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dermatophytes and other members of Onygenales are unique in their ability to degrade keratin, affecting hair and nails, and in the case of human hosts, causing skin infections. Subtillisins are essential proteases in keratin assimilation, and subtilisin-like protease 1 (SUB1) and SUB3–7 are specific for dermatophytes. eIF2α kinases are serine-threonine kinases that perform essential functions in response to infection, proteotoxicity, and nutrient scavenging. The relatively conserved nature of EIF2AK4 among fungi makes them potential evolutionary markers, which may contribute to a deeper understanding of dermatophyte taxonomy and evolution. This study aimed to assess the phylogeny of dermatophytes by examining the EIF2AK4 and SUB1 genes compared to the ITS gene marker. The phylogenetic trees generated from the EIF2AK4 and SUB1 genes exhibited a similar topology, which differed from that observed in the ITS tree. Our preliminary findings with a limited dataset suggest that the EIF2AK4 and SUB1 genes provide a reasonably correct reflection of the evolution of Arthrodermataceae. In addition, the study analyzed in vitro keratinolytic responses of 19 dermatophyte species using hairs of a broad range of mammals, including ancestral as well as derived species, as substrates. Trichophyton mentagrophytes and Nannizzia gypsea were the most active in degrading hair, while Trichophyton verrucosum, Trichophyton tonsurans and Epidermophyton floccosum showed low response. Hairs of Hyracoidea and Rodentia were most affected of all mammal hairs, while in contrast, bat hairs were difficult to degrade by nearly all tested dermatophyte species. Zoophilic species showed more activity than anthropophilic dermatophytes, but hair degradation profiles were not diagnostic for particular dermatophyte species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤植物和哺乳动物毛发:节皮科进化的各个方面
皮肤真菌和Onygenales的其他成员在降解角蛋白,影响头发和指甲以及在人类宿主的情况下引起皮肤感染方面具有独特的能力。枯草素是角蛋白同化过程中必需的蛋白酶,而枯草素样蛋白酶1 (SUB1)和SUB3-7是皮肤真菌所特有的。eIF2α激酶是丝氨酸-苏氨酸激酶,在应对感染、蛋白质毒性和营养清除方面发挥重要作用。EIF2AK4在真菌中的相对保守性使其成为潜在的进化标记,这可能有助于更深入地了解皮肤真菌的分类和进化。本研究旨在通过检测EIF2AK4和SUB1基因与ITS基因标记的比较来评估皮肤真菌的系统发育。由EIF2AK4和SUB1基因生成的系统发育树显示出类似的拓扑结构,这与ITS树中观察到的不同。我们在有限的数据集上的初步发现表明,EIF2AK4和SUB1基因提供了一个相当正确的反映关节皮科进化的基因。此外,该研究还分析了19种皮肤真菌的体外角化反应,使用了广泛的哺乳动物(包括祖先和衍生物种)的毛发作为底物。对毛的降解活性最高的是墨多毛癣菌和石膏毛癣菌,而对疣毛癣菌、疣毛癣菌和絮状表皮癣菌的降解活性较低。在所有哺乳动物的毛发中,水螅目和啮齿目的毛发受到的影响最大,而蝙蝠的毛发几乎都难以被所有的皮肤真菌降解。嗜兽种比嗜人种表现出更强的活性,但毛发降解谱不能诊断特定种类的皮肤真菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fungal Diversity
Fungal Diversity 生物-真菌学
CiteScore
44.80
自引率
9.90%
发文量
17
审稿时长
6 months
期刊介绍: Fungal Diversity, the official journal of the Kunming Institute of Botany of the Chinese Academy of Sciences, is an international, peer-reviewed journal covering all aspects of mycology. It prioritizes papers on biodiversity, systematic, and molecular phylogeny. While it welcomes novel research and review articles, authors aiming to publish checklists are advised to seek regional journals, and the introduction of new species and genera should generally be supported by molecular data. Published articles undergo peer review and are accessible online first with a permanent DOI, making them citable as the official Version of Record according to NISO RP-8-2008 standards. Any necessary corrections after online publication require the publication of an Erratum.
期刊最新文献
Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida) Fungal numbers: global needs for a realistic assessment Classes and phyla of the kingdom Fungi Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence Current insights into palm fungi with emphasis on taxonomy and phylogeny
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1