首页 > 最新文献

Fungal Diversity最新文献

英文 中文
Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida) 小孢子虫和无脊椎动物宿主:围绕感染小龙虾的诺斯玛属(诺斯玛目)新品系的基因组信息分类法
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-11-11 DOI: 10.1007/s13225-024-00543-w
Cheyenne E. Stratton, Sara A. Bolds, Lindsey S. Reisinger, Donald C. Behringer, Amjad Khalaf, Jamie Bojko

The Microsporidia, an often overlooked fungal lineage, exhibit increasing diversity and taxonomic understanding with the use of genomic techniques. They are obligate parasites infecting a diversity of hosts, including crustaceans. Crustacea are, in essence, ancient insects and their relationship with the Microsporidia is both diverse and convoluted. Relationships between crayfish and their microsporidian parasites display geospatial and taxonomic diversity. Through classical (histological, ultrastructural, developmental) and genomic (phylogenetic, phylogenomic) approaches, we expand the known diversity of crayfish-infecting microsporidia into the genus Nosema by describing three novel species from North America: Nosema astafloridana n. sp. infecting Procambarus pictus and Procambarus spiculifer, Nosema rusticus n. sp. infecting Faxonius rusticus, and Nosema wisconsinii n. sp. infecting Faxonius propinquus and Faxonius virilis. Additionally, we provide SSU sequence data for further Nosema diversity from Procambarus clarkii and Pacifasticus gambelii. The taxonomy of aquatic crustacean-infecting Nosema have been under scrutiny among microsporidiologists—using genomic data we solidify this systematic relationship. Our genomic data reveal phylogenomic divergence between terrestrial insect-infecting Nosema and aquatic crustacean-infecting Nosema but place our novel species within the Nosema. Comparative genomic analysis reveal that Nosema rusticus n. sp. is a tetraploid organism, making this the first known polyploid from the genus Nosema. Annotation of the genomic data highlight that crayfish-infecting Nosema have distinct proteomic differences when compared to amphipod and insect-infecting microsporidians. Alongside the new diversity uncovered and genome-supported systematics, we consider the role of these new ‘invasive’ parasites in biological invasion systems, exploring their relationship with their invasive hosts.

小孢子虫是一个经常被忽视的真菌门类,随着基因组学技术的应用,其多样性和分类学知识日益丰富。它们是感染包括甲壳动物在内的多种宿主的强制性寄生虫。甲壳动物本质上是古老的昆虫,它们与小孢子虫的关系既多样又复杂。小龙虾与其小孢子虫寄生虫之间的关系呈现出地理空间和分类学上的多样性。通过经典(组织学、超微结构学、发育学)和基因组学(系统发育学、系统基因组学)方法,我们描述了来自北美洲的三个新物种,从而扩展了小龙虾感染小孢子虫属的已知多样性:感染Procambarus pictus和Procambarus spiculifer的Nosema astafloridana n. sp.、感染Faxonius rusticus的Nosema rusticus n. sp.以及感染Faxonius propinquus和Faxonius virilis的Nosema wisconsinii n. sp.。此外,我们还提供了SSU序列数据,以进一步丰富Procambarus clarkii和Pacifasticus gambelii的Nosema多样性。水生甲壳动物感染的诺斯马氏菌的分类一直受到微孢子虫学家的关注--利用基因组数据,我们巩固了这种系统关系。我们的基因组数据揭示了陆生昆虫感染诺斯马属真菌和水生甲壳动物感染诺斯马属真菌之间的系统发育分化,但将我们的新物种归入了诺斯马属真菌。比较基因组分析表明,Nosema rusticus n. sp.是一种四倍体生物,是已知的第一个Nosema属多倍体。对基因组数据的注释突出表明,与片脚类动物和昆虫感染的微孢子虫相比,小龙虾感染的诺斯马属具有明显的蛋白质组差异。除了发现新的多样性和基因组支持的系统学之外,我们还考虑了这些新的 "入侵 "寄生虫在生物入侵系统中的作用,探讨了它们与入侵宿主的关系。
{"title":"Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida)","authors":"Cheyenne E. Stratton, Sara A. Bolds, Lindsey S. Reisinger, Donald C. Behringer, Amjad Khalaf, Jamie Bojko","doi":"10.1007/s13225-024-00543-w","DOIUrl":"https://doi.org/10.1007/s13225-024-00543-w","url":null,"abstract":"<p>The Microsporidia, an often overlooked fungal lineage, exhibit increasing diversity and taxonomic understanding with the use of genomic techniques. They are obligate parasites infecting a diversity of hosts, including crustaceans. Crustacea are, in essence, ancient insects and their relationship with the Microsporidia is both diverse and convoluted. Relationships between crayfish and their microsporidian parasites display geospatial and taxonomic diversity. Through classical (histological, ultrastructural, developmental) and genomic (phylogenetic, phylogenomic) approaches, we expand the known diversity of crayfish-infecting microsporidia into the genus <i>Nosema</i> by describing three novel species from North America: <i>Nosema astafloridana</i> n. sp. infecting <i>Procambarus pictus</i> and <i>Procambarus spiculifer</i>, <i>Nosema rusticus</i> n. sp. infecting <i>Faxonius rusticus</i>, and <i>Nosema wisconsinii</i> n. sp. infecting <i>Faxonius propinquus</i> and <i>Faxonius virilis</i>. Additionally, we provide SSU sequence data for further <i>Nosema</i> diversity from <i>Procambarus clarkii</i> and <i>Pacifasticus gambelii</i>. The taxonomy of aquatic crustacean-infecting <i>Nosema</i> have been under scrutiny among microsporidiologists—using genomic data we solidify this systematic relationship. Our genomic data reveal phylogenomic divergence between terrestrial insect-infecting <i>Nosema</i> and aquatic crustacean-infecting <i>Nosema</i> but place our novel species within the <i>Nosema</i>. Comparative genomic analysis reveal that <i>Nosema rusticus</i> n. sp. is a tetraploid organism, making this the first known polyploid from the genus <i>Nosema</i>. Annotation of the genomic data highlight that crayfish-infecting <i>Nosema</i> have distinct proteomic differences when compared to amphipod and insect-infecting microsporidians. Alongside the new diversity uncovered and genome-supported systematics, we consider the role of these new ‘invasive’ parasites in biological invasion systems, exploring their relationship with their invasive hosts.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"19 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal numbers: global needs for a realistic assessment 真菌数量:全球对现实评估的需求
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-11-07 DOI: 10.1007/s13225-024-00545-8
Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe

Estimates of global fungal diversity have varied widely, suggesting a range from fewer than one million to over 10 million species, with each of the estimates drawing data from various criteria. In 2022, Fungal Diversity published a special issue on fungal numbers. It had been hoped that the editorial would provide a more accurate account of the numbers of fungi. Instead, it was concluded that this was not possible based on present evidence and, some of the data necessary for accurate assessments was put forward, and the present paper expands on this short article. The review first looks at estimates of fungal numbers and what these estimates are based on. It then presents future research needs that will help us to gain a more accurate estimate of fungal numbers. This includes work that needs to be done in tropical rainforests, where the greatest diversity is expected, where whole rainforests, canopy diversity, and palm fungi are addressed. Case studies for lichens and associated fungi, soil and litter fungi, evidence from particle filtration, freshwater fungi, marine fungi, mushrooms, and yeasts will also be given. Once we have such information, we can obtain a more accurate estimate of fungal numbers.

对全球真菌多样性的估计差异很大,从不到一百万到超过一千万种不等,每种估计都从不同的标准中提取数据。2022 年,《真菌多样性》出版了一期关于真菌数量的特刊。人们曾希望这篇社论能对真菌的数量做出更准确的描述。但社论的结论是,根据目前的证据不可能做到这一点,并提出了准确评估所需的一些数据,本文就是在这篇短文的基础上进一步阐述的。本综述首先探讨了真菌数量的估计值以及这些估计值的依据。然后介绍了未来的研究需求,这将有助于我们更准确地估算真菌数量。这包括需要在热带雨林中开展的工作,因为热带雨林的多样性预计是最丰富的,其中涉及整个雨林、树冠多样性和棕榈真菌。此外,还将对地衣和相关真菌、土壤和垃圾真菌、颗粒过滤证据、淡水真菌、海洋真菌、蘑菇和酵母菌进行案例研究。一旦掌握了这些信息,我们就能更准确地估计真菌的数量。
{"title":"Fungal numbers: global needs for a realistic assessment","authors":"Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe","doi":"10.1007/s13225-024-00545-8","DOIUrl":"https://doi.org/10.1007/s13225-024-00545-8","url":null,"abstract":"<p>Estimates of global fungal diversity have varied widely, suggesting a range from fewer than one million to over 10 million species, with each of the estimates drawing data from various criteria. In 2022, <i>Fungal Diversity</i> published a special issue on fungal numbers. It had been hoped that the editorial would provide a more accurate account of the numbers of fungi. Instead, it was concluded that this was not possible based on present evidence and, some of the data necessary for accurate assessments was put forward, and the present paper expands on this short article. The review first looks at estimates of fungal numbers and what these estimates are based on. It then presents future research needs that will help us to gain a more accurate estimate of fungal numbers. This includes work that needs to be done in tropical rainforests, where the greatest diversity is expected, where whole rainforests, canopy diversity, and palm fungi are addressed. Case studies for lichens and associated fungi, soil and litter fungi, evidence from particle filtration, freshwater fungi, marine fungi, mushrooms, and yeasts will also be given. Once we have such information, we can obtain a more accurate estimate of fungal numbers.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"140 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classes and phyla of the kingdom Fungi 真菌界的类和门
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-10-15 DOI: 10.1007/s13225-024-00540-z
Nalin N. Wijayawardene, Kevin D. Hyde, Kirill V. Mikhailov, Gábor Péter, André Aptroot, Carmen L. A. Pires-Zottarelli, Bruno T. Goto, Yuri S. Tokarev, Danny Haelewaters, Samantha C. Karunarathna, Paul M. Kirk, André L. C. M. de A. Santiago, Ramesh K. Saxena, Nathan Schoutteten, Madhara K. Wimalasena, Vladimir V. Aleoshin, Abdullah M. S. Al-Hatmi, Kahandawa G. S. U. Ariyawansa, Amanda R. Assunção, Thushara C. Bamunuarachchige, Hans-Otto Baral, D. Jayarama Bhat, Janusz Błaszkowski, Teun Boekhout, Nattawut Boonyuen, Michael Brysch-Herzberg, Bin Cao, Jonathan Cazabonne, Xue-Mei Chen, Claudia Coleine, Dong-Qin Dai, Heide-Marie Daniel, Suzana B. G. da Silva, Francisco Adriano de Souza, Somayeh Dolatabadi, Manish K. Dubey, Arun K. Dutta, Aseni Ediriweera, Eleonora Egidi, Mostafa S. Elshahed, Xinlei Fan, Juliana R. B. Felix, Mahesh C. A. Galappaththi, Marizeth Groenewald, Li-Su Han, Bo Huang, Vedprakash G. Hurdeal, Anastasia N. Ignatieva, Gustavo H. Jerônimo, Ana L. de Jesus, Serhii ..

Fungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.

真菌是最多样化的生物类群之一,物种数量估计在 200 万到 300 万种之间。自 Hibbett 等人以来,人们一直在分子系统发育学的框架内讨论真菌的高层次等级,随后的一些出版物对 "真正真菌 "的定义和高层次等级(如门)进行了修订。新基因组数据的快速积累和系统发生学的进步为真菌王国的高级分类奠定了坚实而精确的基础。本研究通过对全菌纲进行全面的系统发生学分析,对真菌王国的分类进行了更新。我们认为真菌有 19 个门类,即Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota、Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota。在系统发育中,Caulochytriomycota 位于 Chytridiomycota 中;因此,前者被视为后者的同义词,而 Caulochytriomycetes 则被视为 Chytridiomycota 中的一个类。我们对每一个门进行了描述,然后介绍了其类别。新的亚门 Sanchytriomycotina Karpov 是 Sanchytriomycota 中唯一的亚门。Ascomycota 的 Pneumocystomycetes 中的 Pneumocystomycetidae 亚门 Kirk 等人的分类无效,因此得到了验证。还讨论了化石真菌在门和类中的位置,并提供了实例。
{"title":"Classes and phyla of the kingdom Fungi","authors":"Nalin N. Wijayawardene, Kevin D. Hyde, Kirill V. Mikhailov, Gábor Péter, André Aptroot, Carmen L. A. Pires-Zottarelli, Bruno T. Goto, Yuri S. Tokarev, Danny Haelewaters, Samantha C. Karunarathna, Paul M. Kirk, André L. C. M. de A. Santiago, Ramesh K. Saxena, Nathan Schoutteten, Madhara K. Wimalasena, Vladimir V. Aleoshin, Abdullah M. S. Al-Hatmi, Kahandawa G. S. U. Ariyawansa, Amanda R. Assunção, Thushara C. Bamunuarachchige, Hans-Otto Baral, D. Jayarama Bhat, Janusz Błaszkowski, Teun Boekhout, Nattawut Boonyuen, Michael Brysch-Herzberg, Bin Cao, Jonathan Cazabonne, Xue-Mei Chen, Claudia Coleine, Dong-Qin Dai, Heide-Marie Daniel, Suzana B. G. da Silva, Francisco Adriano de Souza, Somayeh Dolatabadi, Manish K. Dubey, Arun K. Dutta, Aseni Ediriweera, Eleonora Egidi, Mostafa S. Elshahed, Xinlei Fan, Juliana R. B. Felix, Mahesh C. A. Galappaththi, Marizeth Groenewald, Li-Su Han, Bo Huang, Vedprakash G. Hurdeal, Anastasia N. Ignatieva, Gustavo H. Jerônimo, Ana L. de Jesus, Serhii ..","doi":"10.1007/s13225-024-00540-z","DOIUrl":"https://doi.org/10.1007/s13225-024-00540-z","url":null,"abstract":"<p>Fungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom <i>Fungi</i>, drawing upon a comprehensive phylogenomic analysis of <i>Holomycota</i>, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of <i>Fungi,</i> viz<i>. Aphelidiomycota</i>, <i>Ascomycota</i>, <i>Basidiobolomycota</i>, <i>Basidiomycota</i>, <i>Blastocladiomycota</i>, <i>Calcarisporiellomycota</i>, <i>Chytridiomycota</i>, <i>Entomophthoromycota</i>, <i>Entorrhizomycota</i>, <i>Glomeromycota</i>, <i>Kickxellomycota</i>, <i>Monoblepharomycota</i>, <i>Mortierellomycota</i>, <i>Mucoromycota</i>, <i>Neocallimastigomycota</i>, <i>Olpidiomycota</i>, <i>Rozellomycota</i>, <i>Sanchytriomycota,</i> and <i>Zoopagomycota</i>. In the phylogenies, <i>Caulochytriomycota</i> resides in <i>Chytridiomycota</i>; thus, the former is regarded as a synonym of the latter, while <i>Caulochytriomycetes</i> is viewed as a class in <i>Chytridiomycota</i>. We provide a description of each phylum followed by its classes. A new subphylum, <i>Sanchytriomycotina</i> Karpov is introduced as the only subphylum in <i>Sanchytriomycota</i>. The subclass <i>Pneumocystomycetidae</i> Kirk et al. in <i>Pneumocystomycetes</i>, <i>Ascomycota</i> is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"44 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence 基于多基因系统学和形态学证据的 Marasmius Fr. 和 Marasmiaceae Roze ex Kühner 的分类学修订
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-30 DOI: 10.1007/s13225-024-00534-x
Jadson J. S. Oliveira, Dennis E. Desjardin, Thomas S. Jenkinson, Simona Margaritescu, Marina Capelari, Jean-Marc Moncalvo

Many taxonomic and systematic rearrangements were proposed to Marasmius Fr. since its original concept in 1835, and since 1980 when it became the type of Marasmiaceae. These were based on morphological and/or more recently molecular phylogenetic studies. This study conducted a comprehensive taxonomic and systematic evaluation of Marasmius that benefits the whole family, implementing multilocus (SSU, LSU, ITS, rpb2 and ef1-α) phylogenetic analyses integrated with morphological and other features. The resulting trees support (1) a Marasmiaceae clade-based circumscription within Marasmiineae, (2) a Marasmius clade-based circumscription within Marasmiaceae, and (3) a subgenus-section-subsection-series system. Two subgenera are proposed: Globulares and Marasmius. Marasmius auton. subgen. includes Crinis-eques sect. nov., sect. Marasmius, Sanguirotales sect. nov., Variabilispori sect. nov., and Sicciformes sect. nov., while Globulares subg. nov. groups sect. Globulares and sect. Sicci. Four subsections are proposed in sect. Globulares and three in sect. Marasmius and sect. Sicciformes. Seventeen series were defined in sect. Globulares and three in sect. Sicci. Selected traits were assessed for their phylogenetic signals within Marasmius, providing a robust framework for a natural system. Based on this analysis, Marasmiaceae includes Chaetocalathus, Crinipellis, Marasmius and Moniliophthora/Paramarasmius, and Campanellaceae fam. nov. includes Brunneocorticium, Campanella/Tetrapyrgos, Neocampanella, and Marasmiellus sect. Candidi. New species, names, combinations and epitypes are also proposed.

Marasmius Fr.自 1835 年提出最初概念以来,以及自 1980 年成为 Marasmiaceae 的类型以来,人们对其提出了许多分类和系统重排建议。这些都是基于形态学和/或最近的分子系统学研究。本研究通过多焦点(SSU、LSU、ITS、rpb2 和 ef1-α)系统发育分析,结合形态学和其他特征,对 Marasmius 进行了全面的分类和系统评估,使整个科受益。结果树支持:(1)Marasmiineae 内基于 Marasmiaceae 支系的圈定;(2)Marasmiaceae 内基于 Marasmius 支系的圈定;以及(3)亚属-科-亚科-系列系统。提出了两个亚属:Globulares 和 Marasmius。Marasmius auton.亚属包括 Crinis-eques sect.Marasmius, Sanguirotales sect.Globulares 和 sect.Sicci.Globulares subg.Globulares 中提出了 4 个亚科,Marasmius 和 sect.Marasmius 和 sect.Sicciformes.在 sect.在 Globulares 节中定义了 17 个系列,在 Sicci 节中定义了 3 个系列。Sicci.对所选性状进行了评估,以确定其在 Marasmius 内的系统发育信号,从而为自然系统提供了一个稳健的框架。根据这一分析,Marasmiaceae 包括 Chaetocalathus、Crinipellis、Marasmius 和 Moniliophthora/Paramarasmius,而 Campanellaceae fam. nov. 包括 Brunneocorticium、Campanella/Tetrapyrgos、Neocampanella 和 Marasmiellus sect.Candidi。还提出了新种、名称、组合和表型。
{"title":"Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence","authors":"Jadson J. S. Oliveira, Dennis E. Desjardin, Thomas S. Jenkinson, Simona Margaritescu, Marina Capelari, Jean-Marc Moncalvo","doi":"10.1007/s13225-024-00534-x","DOIUrl":"https://doi.org/10.1007/s13225-024-00534-x","url":null,"abstract":"<p>Many taxonomic and systematic rearrangements were proposed to <i>Marasmius</i> Fr. since its original concept in 1835, and since 1980 when it became the type of Marasmiaceae. These were based on morphological and/or more recently molecular phylogenetic studies. This study conducted a comprehensive taxonomic and systematic evaluation of <i>Marasmius</i> that benefits the whole family, implementing multilocus (SSU, LSU, ITS, <i>rpb2</i> and <i>ef1-α</i>) phylogenetic analyses integrated with morphological and other features. The resulting trees support (1) a Marasmiaceae clade-based circumscription within Marasmiineae, (2) a <i>Marasmius</i> clade-based circumscription within Marasmiaceae, and (3) a subgenus-section-subsection-series system. Two subgenera are proposed: <i>Globulares</i> and <i>Marasmius</i>. <i>Marasmius</i> auton. subgen. includes <i>Crinis-eques</i> sect. nov., sect. <i>Marasmius</i>, <i>Sanguirotales</i> sect. nov., <i>Variabilispori</i> sect. nov., and <i>Sicciformes</i> sect. nov., while <i>Globulares</i> subg. nov. groups sect. <i>Globulares</i> and sect. <i>Sicci</i>. Four subsections are proposed in sect. <i>Globulares</i> and three in sect. <i>Marasmius</i> and sect. <i>Sicciformes</i>. Seventeen series were defined in sect. <i>Globulares</i> and three in sect. <i>Sicci</i>. Selected traits were assessed for their phylogenetic signals within <i>Marasmius</i>, providing a robust framework for a natural system. Based on this analysis, Marasmiaceae includes <i>Chaetocalathus</i>, <i>Crinipellis</i>, <i>Marasmius</i> and <i>Moniliophthora/Paramarasmius</i>, and Campanellaceae fam. nov. includes <i>Brunneocorticium</i>, <i>Campanella/Tetrapyrgos</i>, <i>Neocampanella</i>, and <i>Marasmiellus</i> sect. <i>Candidi</i>. New species, names, combinations and epitypes are also proposed.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"85 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current insights into palm fungi with emphasis on taxonomy and phylogeny 目前对棕榈真菌的了解,重点是分类学和系统发育
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-15 DOI: 10.1007/s13225-024-00536-9
Sheng-Nan Zhang, Kevin D. Hyde, E. B. Gareth Jones, Xian-Dong Yu, Ratchadawan Cheewangkoon, Jian-Kui Liu
<p>Palms (Arecaceae) are emblems of tropical forests and host a vast array of fungi. The fungi associated with palms have been studied for over two centuries. However, taxonomic identification of some taxa, especially of the prominent genera <i>Anthostomella</i>, <i>Linocarpon</i> and <i>Oxydothis</i>, when based solely on macro- and micro-morphological characteristics is confused and needs better taxonomic resolution. The present study contributes to palm fungal taxonomy by incorporating molecular approaches for fungal identification based on new collections from China and Thailand. In total, 538 samples with 248 successfully obtained fungal isolates were derived from about 23 palm genera. Preliminary analyses showed that these taxa could be recognized as 170 species belonging to 115 genera, 66 families, and three genera <i>incertae sedis</i>. The fungi were mainly distributed in Dothideomycetes (<i>c.</i> 57.6%) and Sordariomycetes (<i>c.</i> 40.6%), with a few Lecanoromycetes (0.6%), Leotiomycetes (0.6%), and Orbiliomycetes (0.6%). In the present study on palm hosts in different ecosystems, it becomes obvious that the biodiversity and specificity of palm fungi is a reflection of habitats more than the hosts or geographical distributions. Based on morpho-phylogenetic evidence, 109 interesting taxa have been illustrated and described, including one new family Pseudocapsulosporaceae, seven new genera and 48 new species. The new genera are <i>Javarisimilis</i> and <i>Thecatisporium</i> (Astrosphaeriellaceae), <i>Neomorosphaeria</i> (Morosphaeriaceae), <i>Pseudocapsulospora</i> (Pseudocapsulosporaceae), <i>Pseudoeutypa</i> (Diatrypaceae), <i>Pseudothailandiomyces</i> (Tirisporellaceae), and <i>Subanthostomella</i> (Xylariales <i>incertae sedis</i>). New species are <i>Anthostomella arecacearum</i>, <i>A. foliatella</i>, <i>A. mangrovei</i>, <i>A. pseudobirima</i>, <i>Brunneiapiospora phoenicis</i>, <i>Diaporthe trachycarpi</i>, <i>Dictyosporium licualae</i>, <i>Ernakulamia palmae</i>, <i>Exosporium licualae</i>, <i>Fasciatispora asexualis</i>, <i>Javarisimilis palmarum</i>, <i>Koorchaloma arecae</i>, <i>Lophodermium nypae</i>, <i>Morenoina rattanica</i>, <i>Nemania palmarum</i>, <i>Neobambusicola palmae</i>, <i>Neodeightonia nypae</i>, <i>Neoeriomycopsis sabal</i>, <i>Neoleptosporella palmae</i>, <i>Neomassaria livistonae</i>, <i>N. palmae</i>, <i>Neomorosphaeria mangrovei</i>, <i>Neosetophoma trachycarpi</i>, <i>Niesslia trachycarpi</i>, <i>Orbilia licualae</i>, <i>Oxydothis caryotae</i>, <i>Ox. foliata</i>, <i>Ox. palmae</i>, <i>Ox. pyriforme, Ox. sinensis</i>, <i>Parateichospora palmarum</i>, <i>Periconia arecacearum</i>, <i>Phaeosphaeria palmae</i>, <i>Phyllosticta arecacearum</i>, <i>P. foliacea</i>, <i>Protocreopsis palmarum</i>, <i>Pseudocapsulospora phoenicis</i>, <i>Ps. rhapidis</i>, <i>Pseudomicrothyrium palmae</i>, <i>Pseudothailandiomyces nypae</i>, <i>Serenomyces phoeniceus</i>, <i>Stanjehughesia elaeidis</i>, <i>Subanthostomella palma
棕榈树(棕榈科)是热带森林的象征,寄生着大量真菌。两个多世纪以来,人们一直在研究与棕榈相关的真菌。然而,仅根据宏观和微观形态特征对一些类群进行分类鉴定,尤其是对著名的 Anthostomella、Linocarpon 和 Oxydothis 属进行分类鉴定,结果令人困惑,需要更好的分类解决方案。本研究以中国和泰国的新采集物为基础,采用分子方法进行真菌鉴定,为棕榈真菌分类学做出了贡献。共采集了 538 个样本,成功获得 248 个真菌分离物,这些分离物来自约 23 个棕榈属。初步分析表明,这些分类群可被确认为 170 种,隶属于 115 属、66 科和 3 个非属。这些真菌主要分布在齿孢菌纲(约占 57.6%)和尾孢菌纲(约占 40.6%)中,还有少量的角孢菌纲(0.6%)、鳞孢菌纲(0.6%)和直枝孢菌纲(0.6%)。通过对不同生态系统中棕榈寄主的研究,可以明显看出,棕榈真菌的生物多样性和特异性是栖息地的反映,而不是寄主或地理分布的反映。基于形态-系统发育证据,109 个有趣的类群已被说明和描述,包括一个新科假囊孢科、7 个新属和 48 个新种。新属包括:Javarisimilis 和 Thecatisporium(天星菌科)、Neomorosphaeria(Morosphaeriaceae)、Pseudocapsulospora(假帽孢科)、Pseudoeutypa(Diatrypaceae)、Pseudothailandiomyces(Tirisporellaceae)和 Subanthostomella(Xylariales incertae sedis)。新种为 Anthostomella arecacearum、A. foliatella、A. mangrovei、A.pseudobirima, Brunneiapiospora phoenicis, Diaporthe trachycarpi, Dictyosporium licualae, Ernakulamia palmae, Exosporium licualae, Fasciatispora asexualis, Javarisimilis palmarum、Koorchaloma arecae、Lophodermium nypae、Morenoina rattanica、Nemania palmarum、Neobambusicola palmae、Neodeightonia nypae、Neoeriomycopsis sabal、Neoleptosporella palmae、Neomassaria livistonae、N.palmae, Neomorosphaeria mangrovei, Neosetophoma trachycarpi, Niesslia trachycarpi, Orbilia licualae, Oxydothis caryotae, Ox.pyriforme、Ox. sinensis、Parateichospora palmarum、Periconia arecacearum、Phaeosphaeria palmae、Phyllosticta arecacearum、P. foliacea、Protocreopsis palmarum、Pseudocapsulospora phoenicis、Ps.rhapidis, Pseudomicrothyrium palmae, Pseudothailandiomyces nypae, Serenomyces phoeniceus, Stanjehughesia elaeidis, Subanthostomella palmae, Tetraploa palmae, T. phoenicis, Thecatisporium palmae, Virgaria palmae, and Yunnanomyces mangrovei.提出了四个物种的新组合。提供了 Appendispora frondicola(Appendispora 的模式种)的新序列和参考标本,支持将该属替换为 Monoblastiaceae。此外还提供了 Anthostomella nypae、Arecophila nypae、Melanographium citri、M. palmicola、M. selenioides 和 Trichobotrys effusus 的参考标本。新的拟真菌物种 Fasciatispora asexualis 是 Fasciatispora 属的第一个无性报告。此外,还首次报道了 Neoeriomycopsis 属和云南霉属的有性形态。此外,专门研究棕榈真菌的海德及其合作者还开发了一个棕榈真菌在线数据库,并将不断更新新的有趣的棕榈真菌。
{"title":"Current insights into palm fungi with emphasis on taxonomy and phylogeny","authors":"Sheng-Nan Zhang, Kevin D. Hyde, E. B. Gareth Jones, Xian-Dong Yu, Ratchadawan Cheewangkoon, Jian-Kui Liu","doi":"10.1007/s13225-024-00536-9","DOIUrl":"https://doi.org/10.1007/s13225-024-00536-9","url":null,"abstract":"&lt;p&gt;Palms (Arecaceae) are emblems of tropical forests and host a vast array of fungi. The fungi associated with palms have been studied for over two centuries. However, taxonomic identification of some taxa, especially of the prominent genera &lt;i&gt;Anthostomella&lt;/i&gt;, &lt;i&gt;Linocarpon&lt;/i&gt; and &lt;i&gt;Oxydothis&lt;/i&gt;, when based solely on macro- and micro-morphological characteristics is confused and needs better taxonomic resolution. The present study contributes to palm fungal taxonomy by incorporating molecular approaches for fungal identification based on new collections from China and Thailand. In total, 538 samples with 248 successfully obtained fungal isolates were derived from about 23 palm genera. Preliminary analyses showed that these taxa could be recognized as 170 species belonging to 115 genera, 66 families, and three genera &lt;i&gt;incertae sedis&lt;/i&gt;. The fungi were mainly distributed in Dothideomycetes (&lt;i&gt;c.&lt;/i&gt; 57.6%) and Sordariomycetes (&lt;i&gt;c.&lt;/i&gt; 40.6%), with a few Lecanoromycetes (0.6%), Leotiomycetes (0.6%), and Orbiliomycetes (0.6%). In the present study on palm hosts in different ecosystems, it becomes obvious that the biodiversity and specificity of palm fungi is a reflection of habitats more than the hosts or geographical distributions. Based on morpho-phylogenetic evidence, 109 interesting taxa have been illustrated and described, including one new family Pseudocapsulosporaceae, seven new genera and 48 new species. The new genera are &lt;i&gt;Javarisimilis&lt;/i&gt; and &lt;i&gt;Thecatisporium&lt;/i&gt; (Astrosphaeriellaceae), &lt;i&gt;Neomorosphaeria&lt;/i&gt; (Morosphaeriaceae), &lt;i&gt;Pseudocapsulospora&lt;/i&gt; (Pseudocapsulosporaceae), &lt;i&gt;Pseudoeutypa&lt;/i&gt; (Diatrypaceae), &lt;i&gt;Pseudothailandiomyces&lt;/i&gt; (Tirisporellaceae), and &lt;i&gt;Subanthostomella&lt;/i&gt; (Xylariales &lt;i&gt;incertae sedis&lt;/i&gt;). New species are &lt;i&gt;Anthostomella arecacearum&lt;/i&gt;, &lt;i&gt;A. foliatella&lt;/i&gt;, &lt;i&gt;A. mangrovei&lt;/i&gt;, &lt;i&gt;A. pseudobirima&lt;/i&gt;, &lt;i&gt;Brunneiapiospora phoenicis&lt;/i&gt;, &lt;i&gt;Diaporthe trachycarpi&lt;/i&gt;, &lt;i&gt;Dictyosporium licualae&lt;/i&gt;, &lt;i&gt;Ernakulamia palmae&lt;/i&gt;, &lt;i&gt;Exosporium licualae&lt;/i&gt;, &lt;i&gt;Fasciatispora asexualis&lt;/i&gt;, &lt;i&gt;Javarisimilis palmarum&lt;/i&gt;, &lt;i&gt;Koorchaloma arecae&lt;/i&gt;, &lt;i&gt;Lophodermium nypae&lt;/i&gt;, &lt;i&gt;Morenoina rattanica&lt;/i&gt;, &lt;i&gt;Nemania palmarum&lt;/i&gt;, &lt;i&gt;Neobambusicola palmae&lt;/i&gt;, &lt;i&gt;Neodeightonia nypae&lt;/i&gt;, &lt;i&gt;Neoeriomycopsis sabal&lt;/i&gt;, &lt;i&gt;Neoleptosporella palmae&lt;/i&gt;, &lt;i&gt;Neomassaria livistonae&lt;/i&gt;, &lt;i&gt;N. palmae&lt;/i&gt;, &lt;i&gt;Neomorosphaeria mangrovei&lt;/i&gt;, &lt;i&gt;Neosetophoma trachycarpi&lt;/i&gt;, &lt;i&gt;Niesslia trachycarpi&lt;/i&gt;, &lt;i&gt;Orbilia licualae&lt;/i&gt;, &lt;i&gt;Oxydothis caryotae&lt;/i&gt;, &lt;i&gt;Ox. foliata&lt;/i&gt;, &lt;i&gt;Ox. palmae&lt;/i&gt;, &lt;i&gt;Ox. pyriforme, Ox. sinensis&lt;/i&gt;, &lt;i&gt;Parateichospora palmarum&lt;/i&gt;, &lt;i&gt;Periconia arecacearum&lt;/i&gt;, &lt;i&gt;Phaeosphaeria palmae&lt;/i&gt;, &lt;i&gt;Phyllosticta arecacearum&lt;/i&gt;, &lt;i&gt;P. foliacea&lt;/i&gt;, &lt;i&gt;Protocreopsis palmarum&lt;/i&gt;, &lt;i&gt;Pseudocapsulospora phoenicis&lt;/i&gt;, &lt;i&gt;Ps. rhapidis&lt;/i&gt;, &lt;i&gt;Pseudomicrothyrium palmae&lt;/i&gt;, &lt;i&gt;Pseudothailandiomyces nypae&lt;/i&gt;, &lt;i&gt;Serenomyces phoeniceus&lt;/i&gt;, &lt;i&gt;Stanjehughesia elaeidis&lt;/i&gt;, &lt;i&gt;Subanthostomella palma","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"12 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A re-evaluation of Diaporthe: refining the boundaries of species and species complexes 重新评价 Diaporthe:完善物种和物种复合体的界限
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-09 DOI: 10.1007/s13225-024-00538-7
Asha J. Dissanayake, Jin-Tao Zhu, Ya-Ya Chen, Sajeewa S. N. Maharachchikumbura, Kevin D. Hyde, Jian-Kui Liu

Diaporthe is an important plant pathogenic genus, which also occurs as endophytes and saprobes. Many Diaporthe species that are morphologically similar proved to be genetically distinct. The current understanding of Diaporthe taxonomy by applying morphological characters, host associations and multi-gene phylogeny are problematic leading to overestimation/underestimation of species numbers of this significant fungal pathogenic genus. Currently, there are no definite boundaries for the accepted species. Hence, the present study aims to re-structure the genus Diaporthe, based on single gene phylogenies (ITS, tef, tub, cal and his), multi-gene phylogeny justified by applying GCPSR (Genealogical Concordance Phylogenetic Species Recognition) methodology as well as the coalescence-based models (PTP—Poisson Tree Processes and mPTP—multi-rate Poisson Tree Processes). Considering all available type isolates of Diaporthe, the genus is divided into seven sections while boundaries for 13 species and 15 species-complexes are proposed. To support this re-assessment of the genus, 82 Diaporthe isolates obtained from woody hosts in Guizhou Province in China were investigated and revealed the presence of two novel species and 17 previously known species. Synonymies are specified for 31 species based on molecular data and morphological studies. Dividing Diaporthe into several specific sections based on phylogenetic analyses can avoid the construction of lengthy phylogenetic trees of the entire genus in future taxonomic studies. In other words, when one conducts research related to the genus, only species from the appropriate section need to be selected for phylogenetic analysis.

Diaporthe 是一种重要的植物病原菌属,也以内生菌和病原菌的形式存在。事实证明,许多形态上相似的 Diaporthe 物种在基因上是不同的。目前通过形态特征、寄主关系和多基因系统发育对 Diaporthe 分类的理解存在问题,导致对这一重要真菌病原菌属的物种数量估计过高或过低。目前,公认的种没有明确的界限。因此,本研究旨在根据单基因系统发育(ITS、tef、tub、cal 和 his)、应用 GCPSR(谱系一致系统发育物种识别)方法证明的多基因系统发育以及基于凝聚的模型(PTP-泊松树过程和 mPTP-多速率泊松树过程),重新构建 Diaporthe 属。考虑到 Diaporthe 的所有可用模式分离物,该属被划分为 7 个部分,同时提出了 13 个种和 15 个种-复合体的边界。为了支持对该属的重新评估,对从中国贵州省木质寄主中获得的 82 个 Diaporthe 分离物进行了调查,发现了 2 个新种和 17 个以前已知的种。根据分子数据和形态学研究,为 31 个种确定了同名。根据系统发育分析将 Diaporthe 分成几个特定的部分,可以避免在未来的分类研究中构建冗长的全属系统发育树。换句话说,在进行与该属相关的研究时,只需选择相应部分的物种进行系统发育分析。
{"title":"A re-evaluation of Diaporthe: refining the boundaries of species and species complexes","authors":"Asha J. Dissanayake, Jin-Tao Zhu, Ya-Ya Chen, Sajeewa S. N. Maharachchikumbura, Kevin D. Hyde, Jian-Kui Liu","doi":"10.1007/s13225-024-00538-7","DOIUrl":"https://doi.org/10.1007/s13225-024-00538-7","url":null,"abstract":"<p><i>Diaporthe</i> is an important plant pathogenic genus, which also occurs as endophytes and saprobes. Many <i>Diaporthe</i> species that are morphologically similar proved to be genetically distinct. The current understanding of <i>Diaporthe</i> taxonomy by applying morphological characters, host associations and multi-gene phylogeny are problematic leading to overestimation/underestimation of species numbers of this significant fungal pathogenic genus. Currently, there are no definite boundaries for the accepted species. Hence, the present study aims to re-structure the genus <i>Diaporthe</i>, based on single gene phylogenies (ITS, <i>tef</i>, <i>tub</i>, <i>cal</i> and <i>his</i>), multi-gene phylogeny justified by applying GCPSR (Genealogical Concordance Phylogenetic Species Recognition) methodology as well as the coalescence-based models (PTP—Poisson Tree Processes and mPTP—multi-rate Poisson Tree Processes). Considering all available type isolates of <i>Diaporthe</i>, the genus is divided into seven sections while boundaries for 13 species and 15 species-complexes are proposed. To support this re-assessment of the genus, 82 <i>Diaporthe</i> isolates obtained from woody hosts in Guizhou Province in China were investigated and revealed the presence of two novel species and 17 previously known species. Synonymies are specified for 31 species based on molecular data and morphological studies. Dividing <i>Diaporthe</i> into several specific sections based on phylogenetic analyses can avoid the construction of lengthy phylogenetic trees of the entire genus in future taxonomic studies. In other words, when one conducts research related to the genus, only species from the appropriate section need to be selected for phylogenetic analysis.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"9 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylogenomics, divergence times and notes of orders in Basidiomycota 基枝菌纲的系统发生组学、分化时间和各目注释
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-09 DOI: 10.1007/s13225-024-00535-w
Mao-Qiang He, Bin Cao, Fei Liu, Teun Boekhout, Teodor T. Denchev, Nathan Schoutteten, Cvetomir M. Denchev, Martin Kemler, Sergio P. Gorjón, Dominik Begerow, Ricardo Valenzuela, Naveed Davoodian, Tuula Niskanen, Alfredo Vizzini, Scott A. Redhead, Virginia Ramírez-Cruz, Viktor Papp, Vasiliy A. Dudka, Arun Kumar Dutta, Ricardo García-Sandoval, Xin-Zhan Liu, Teeratas Kijpornyongpan, Anton Savchenko, Leho Tedersoo, Bart Theelen, Larissa Trierveiler-Pereira, Fang Wu, Juan Carlos Zamora, Xiang-Yu Zeng, Li-Wei Zhou, Shi-Liang Liu, Masoomeh Ghobad-Nejhad, Admir J. Giachini, Guo-Jie Li, Makoto Kakishima, Ibai Olariaga, Danny Haelewaters, Bobby Sulistyo, Junta Sugiyama, Sten Svantesson, Andrey Yurkov, Pablo Alvarado, Vladimír Antonín, André Felipe da Silva, Irina Druzhinina, Tatiana B. Gibertoni, Laura Guzmán-Dávalos, Alfredo Justo, Samantha C. Karunarathna, Mahesh C. A. Galappaththi, Merje Toome-Heller, Tsuyoshi Hosoya, Kare Liimatainen, Rodrigo Márquez, Armin Mešić, Jean-Marc Moncalvo..

Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.

担子菌纲(Basidiomycota)是真菌生命树中的一个主要门类。Basidiomycota 纲为真菌学研究人员和工作人员提供了重要的分类信息。在本研究中,我们以时间为框架建立了一棵系统发生树,包含了巴西真菌界的 127 个科、47 个目、14 个类和 4 个亚门的 487 个物种;根据系统发生关系和 2019 年以来的分类学研究更新了巴西真菌界的大纲;并为每个目提供了注释,讨论了其历史、定义特征、进化、目的合理性、问题、意义和板块。我们的系统发生组分析表明,亚门的分化时间范围为 443-490 Myr(百万年),门的分化时间范围为 312-412 Myr,纲的分化时间范围为 102-361 Myr。姬松茸科(Agaricomycotina)、褐姬松茸科(Pucciniomycotina)和星姬松茸科(Ustilaginomycotina)的科的分化时间范围分别为 50-289 Myr、76-224 Myr 和 62-156 Myr。根据系统发生组的关系和分化时间,我们提议在姬松茸目中建立一个新的菌亚目(Mycenineae),以容纳真菌科(Mycenaceae)。在目前的 Basidiomycota 纲中,共接受了 4 个亚纲、20 个类、77 个目、297 个科和 2134 个属。在基因组时代建立健全的巴西真菌分类法时,分子系统发育数据的生成变得相对容易。然而,寻找表型特征,尤其是可用于鉴定和分类的表型特征,却变得越来越具有挑战性。
{"title":"Phylogenomics, divergence times and notes of orders in Basidiomycota","authors":"Mao-Qiang He, Bin Cao, Fei Liu, Teun Boekhout, Teodor T. Denchev, Nathan Schoutteten, Cvetomir M. Denchev, Martin Kemler, Sergio P. Gorjón, Dominik Begerow, Ricardo Valenzuela, Naveed Davoodian, Tuula Niskanen, Alfredo Vizzini, Scott A. Redhead, Virginia Ramírez-Cruz, Viktor Papp, Vasiliy A. Dudka, Arun Kumar Dutta, Ricardo García-Sandoval, Xin-Zhan Liu, Teeratas Kijpornyongpan, Anton Savchenko, Leho Tedersoo, Bart Theelen, Larissa Trierveiler-Pereira, Fang Wu, Juan Carlos Zamora, Xiang-Yu Zeng, Li-Wei Zhou, Shi-Liang Liu, Masoomeh Ghobad-Nejhad, Admir J. Giachini, Guo-Jie Li, Makoto Kakishima, Ibai Olariaga, Danny Haelewaters, Bobby Sulistyo, Junta Sugiyama, Sten Svantesson, Andrey Yurkov, Pablo Alvarado, Vladimír Antonín, André Felipe da Silva, Irina Druzhinina, Tatiana B. Gibertoni, Laura Guzmán-Dávalos, Alfredo Justo, Samantha C. Karunarathna, Mahesh C. A. Galappaththi, Merje Toome-Heller, Tsuyoshi Hosoya, Kare Liimatainen, Rodrigo Márquez, Armin Mešić, Jean-Marc Moncalvo..","doi":"10.1007/s13225-024-00535-w","DOIUrl":"https://doi.org/10.1007/s13225-024-00535-w","url":null,"abstract":"<p>Basidiomycota is one of the major phyla in the fungal tree of life. The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology. In this study, we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families, 47 orders, 14 classes and four subphyla; we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019; and we provide notes for each order and discuss the history, defining characteristics, evolution, justification of orders, problems, significance, and plates. Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443–490 Myr (million years), classes in a time range of 312–412 Myr, and orders in a time range of 102–361 Myr. Families diverged in a time range of 50–289 Myr, 76–224 Myr, and 62–156 Myr in Agaricomycotina, Pucciniomycotina, and Ustilaginomycotina, respectively. Based on the phylogenomic relationships and divergence times, we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae. In the current outline of Basidiomycota, there are four subphyla, 20 classes, 77 orders, 297 families, and 2134 genera accepted. When building a robust taxonomy of Basidiomycota in the genomic era, the generation of molecular phylogenetic data has become relatively easier. Finding phenotypical characters, especially those that can be applied for identification and classification, however, has become increasingly challenging.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"39 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141566298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection dictates the distance pattern of similarity in trees and soil fungi across forest ecosystems 选择决定了森林生态系统中树木和土壤真菌相似性的距离模式
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-07-01 DOI: 10.1007/s13225-024-00537-8
Yue-Hua Hu, Daniel J. Johnson, Zhen-Hua Sun, Lian-Ming Gao, Han-Dong Wen, Kun Xu, Hua Huang, Wei-Wei Liu, Min Cao, Ze-Wei Song, Peter G. Kennedy

How the four major processes affecting community assembly—selection, dispersal, drift, and diversification—solely or jointly shape co-occurring assemblages of macro- and microorganisms at the same scales remains poorly understood. Here, we delved into the distance pattern of similarity (DPS) in tree and soil fungal communities in three c. 20-hectare forest plots spanning tropical to temperate climates in Yunnan province, Southwest China. Specifically, we decrypted the assembly contribution of individual-based random sampling, selection and/or dispersal using drift-inexplicit ordination and drift-explicit baseline models. Surprisingly, our findings demonstrated that most soil fungal realized distribution ranges (RDR) were shorter than most trees. Because of explicitly integrating drift and the range of DPS is broader than the RDR of most trees and fungi, selection baseline models overwhelmingly captured the DPS structures in trees and fungi across spatial scales in tropical, subtropical, and subalpine forest ecosystems and that for fungi across taxonomic levels and fungal guilds. Under the premise that modeling frameworks, ecosystems, spatial scales, sample intensities, selection variables, and dispersal variables are well unified, the ubiquitous dominance of selection elucidates no fundamental difference in the assembly mechanism between trees and soil fungi.

影响群落组合的四个主要过程--选择、扩散、漂移和多样化--是如何在同一尺度上单独或共同形成共生的大型生物和微生物群落的,人们对此仍然知之甚少。在这里,我们深入研究了中国西南部云南省从热带气候到温带气候的三个面积约 20 公顷的林地中树木和土壤真菌群落的相似性距离模式(DPS)。具体而言,我们利用漂移-非显性序化和漂移-显性基线模型解密了基于个体的随机取样、选择和/或扩散的集合贡献。令人惊讶的是,我们的研究结果表明,大多数土壤真菌的实现分布范围(RDR)比大多数树木短。由于明确地整合了漂移,而且DPS的范围比大多数树木和真菌的RDR更广,因此选择基线模型在热带、亚热带和亚高山森林生态系统的空间尺度上绝大多数捕捉到了树木和真菌的DPS结构,而真菌的DPS结构则捕捉到了不同分类水平和真菌行业的DPS结构。在建模框架、生态系统、空间尺度、样本强度、选择变量和散布变量完全统一的前提下,无处不在的选择优势说明树木和土壤真菌的组装机制没有本质区别。
{"title":"Selection dictates the distance pattern of similarity in trees and soil fungi across forest ecosystems","authors":"Yue-Hua Hu, Daniel J. Johnson, Zhen-Hua Sun, Lian-Ming Gao, Han-Dong Wen, Kun Xu, Hua Huang, Wei-Wei Liu, Min Cao, Ze-Wei Song, Peter G. Kennedy","doi":"10.1007/s13225-024-00537-8","DOIUrl":"https://doi.org/10.1007/s13225-024-00537-8","url":null,"abstract":"<p>How the four major processes affecting community assembly—selection, dispersal, drift, and diversification—solely or jointly shape co-occurring assemblages of macro- and microorganisms at the same scales remains poorly understood. Here, we delved into the distance pattern of similarity (DPS) in tree and soil fungal communities in three <i>c.</i> 20-hectare forest plots spanning tropical to temperate climates in Yunnan province, Southwest China. Specifically, we decrypted the assembly contribution of individual-based random sampling, selection and/or dispersal using drift-inexplicit ordination and drift-explicit baseline models. Surprisingly, our findings demonstrated that most soil fungal realized distribution ranges (RDR) were shorter than most trees. Because of explicitly integrating drift and the range of DPS is broader than the RDR of most trees and fungi, selection baseline models overwhelmingly captured the DPS structures in trees and fungi across spatial scales in tropical, subtropical, and subalpine forest ecosystems and that for fungi across taxonomic levels and fungal guilds. Under the premise that modeling frameworks, ecosystems, spatial scales, sample intensities, selection variables, and dispersal variables are well unified, the ubiquitous dominance of selection elucidates no fundamental difference in the assembly mechanism between trees and soil fungi.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"51 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current trends, limitations and future research in the fungi? 真菌研究的当前趋势、局限性和未来发展?
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-03-20 DOI: 10.1007/s13225-023-00532-5
Kevin D. Hyde, Petr Baldrian, Yanpeng Chen, K. W. Thilini Chethana, Sybren De Hoog, Mingkwan Doilom, Antonio R. Gomes de Farias, Micael F. M. Gonçalves, Didsanutda Gonkhom, Heng Gui, Sandra Hilário, Yuwei Hu, Ruvishika S. Jayawardena, Sabin Khyaju, Paul M. Kirk, Petr Kohout, Thatsanee Luangharn, Sajeewa S. N. Maharachchikumbura, Ishara S. Manawasinghe, Peter E. Mortimer, Allen Grace T. Niego, Monthien Phonemany, Birthe Sandargo, Indunil C. Senanayake, Marc Stadler, Frank Surup, Naritsada Thongklang, Dhanushka N. Wanasinghe, Ali H. Bahkali, Arttapon Walker

The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.

真菌学领域已经从一个不被重视的植物学分支发展成为一门宝贵的现代科学学科。随着这一研究领域的发展,真菌对科学、技术和工业做出了重大贡献,彰显了真菌在现代的价值。本文探讨了真菌学领域目前的研究情况以及存在的局限性,并提出了科学家未来可以重点研究的领域。我们展示了真菌如何成为医学真菌学中重要的新兴疾病。我们讨论了真菌在药物和新型化合物发现方面的当前趋势和潜力。我们探讨了系统发生组学的当前趋势、潜力和成果,并探讨了系统发生组学如何应用于真菌生态学的问题。此外,我们还讨论了真菌功能基因组学研究的趋势及其在揭示真菌行为、相互作用和适应性的复杂机制方面的重要性,从而为全面了解真菌生物学铺平道路。我们探讨了当前在建筑材料方面的研究,如何将它们用作碳汇,以及如何将真菌用于生物循环经济。真菌的数量一直是人们非常关心的问题,也经常被撰文讨论,但估计数字却大相径庭。因此,我们讨论了当前的趋势和未来的研究需求,以便获得更可靠的估算。我们讨论了机器学习(AI)的各个方面以及如何将其用于真菌学研究。植物病原体正在全球范围内影响粮食生产系统,因此,我们将探讨该领域的当前趋势和未来研究需求,特别是在病害检测方面。我们关注高通量测序研究的最新数据,并质疑我们是否仍在以与以往相同的速度获取新知识。我们回顾了当前纳米技术的发展趋势,并探讨了纳米技术的未来潜力。探讨了丛枝菌根真菌的重要性,并确认了未来的发展趋势。真菌数据库正变得越来越重要,因此我们对当前的主要数据库进行了综述。食用和药用真菌作为食品和药品具有巨大的潜力,尤其是在亚洲。真菌的生活方式变化(如从内生菌到病原体和/或溶菌体)也极为重要,是当前的研究趋势,因此本期《真菌多样性》特刊将对此进行探讨。
{"title":"Current trends, limitations and future research in the fungi?","authors":"Kevin D. Hyde, Petr Baldrian, Yanpeng Chen, K. W. Thilini Chethana, Sybren De Hoog, Mingkwan Doilom, Antonio R. Gomes de Farias, Micael F. M. Gonçalves, Didsanutda Gonkhom, Heng Gui, Sandra Hilário, Yuwei Hu, Ruvishika S. Jayawardena, Sabin Khyaju, Paul M. Kirk, Petr Kohout, Thatsanee Luangharn, Sajeewa S. N. Maharachchikumbura, Ishara S. Manawasinghe, Peter E. Mortimer, Allen Grace T. Niego, Monthien Phonemany, Birthe Sandargo, Indunil C. Senanayake, Marc Stadler, Frank Surup, Naritsada Thongklang, Dhanushka N. Wanasinghe, Ali H. Bahkali, Arttapon Walker","doi":"10.1007/s13225-023-00532-5","DOIUrl":"https://doi.org/10.1007/s13225-023-00532-5","url":null,"abstract":"<p>The field of mycology has grown from an underappreciated subset of botany, to a valuable, modern scientific discipline. As this field of study has grown, there have been significant contributions to science, technology, and industry, highlighting the value of fungi in the modern era. This paper looks at the current research, along with the existing limitations, and suggests future areas where scientists can focus their efforts, in the field mycology. We show how fungi have become important emerging diseases in medical mycology. We discuss current trends and the potential of fungi in drug and novel compound discovery. We explore the current trends in phylogenomics, its potential, and outcomes and address the question of how phylogenomics can be applied in fungal ecology. In addition, the trends in functional genomics studies of fungi are discussed with their importance in unravelling the intricate mechanisms underlying fungal behaviour, interactions, and adaptations, paving the way for a comprehensive understanding of fungal biology. We look at the current research in building materials, how they can be used as carbon sinks, and how fungi can be used in biocircular economies. The numbers of fungi have always been of great interest and have often been written about and estimates have varied greatly. Thus, we discuss current trends and future research needs in order to obtain more reliable estimates. We address the aspects of machine learning (AI) and how it can be used in mycological research. Plant pathogens are affecting food production systems on a global scale, and as such, we look at the current trends and future research needed in this area, particularly in disease detection. We look at the latest data from High Throughput Sequencing studies and question if we are still gaining new knowledge at the same rate as before. A review of current trends in nanotechnology is provided and its future potential is addressed. The importance of Arbuscular Mycorrhizal Fungi is addressed and future trends are acknowledged. Fungal databases are becoming more and more important, and we therefore provide a review of the current major databases. Edible and medicinal fungi have a huge potential as food and medicines, especially in Asia and their prospects are discussed. Lifestyle changes in fungi (e.g., from endophytes, to pathogens, and/or saprobes) are also extremely important and a current research trend and are therefore addressed in this special issue of Fungal Diversity.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"31 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140182799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Species diversity of fungal pathogens on cultivated mushrooms: a case study on morels (Morchella, Pezizales) 栽培蘑菇上真菌病原体的物种多样性:羊肚菌(Morchella,Pezizales)案例研究
IF 20.3 1区 生物学 Q1 MYCOLOGY Pub Date : 2024-03-05 DOI: 10.1007/s13225-023-00531-6
Feng-Ming Yu, Ruvishika S. Jayawardena, Thatsanee Luangharn, Xiang-Yu Zeng, Cui-Jin-Yi Li, Shu-Xin Bao, Hong Ba, De-Qun Zhou, Song-Ming Tang, Kevin D. Hyde, Qi Zhao
<p>Mushrooms are important organisms because of their human nutritional and medicinal value. With the expansion of the cultivation of edible mushrooms, fungal diseases have become a major problem in limiting their production. Numerous fungi can cause mushroom deformation or rots. In this publication we report on fungal diseases found during <i>Morchella</i> cultivation in China, with emphasis on morphology and phylogeny to characterise species. The key findings include 1) establishment of a new family <i>Albomorchellophilaceae</i> in <i>Hypocreales</i>, and a novel monotypic genus <i>Albomorchellophila</i> with the type species <i>A. morchellae</i>. Divergence time estimates indicate that <i>Albomorchellophilaceae</i> diverged from its sister family <i>Calcarisporiaceae</i> at ca. 105 (92–120) MYA; 2) the phylogeny and morphology of the family <i>Pseudodiploosporeaceae</i> (<i>Hypocreales</i>) is revised. The family contains a single genus <i>Pseudodiploospora</i>. Intraspecific genetic analyses of <i>Pseudodiploospora longispora</i> reveals significant base differences within strains, especially in the regions of protein-coding genes <i>RPB</i> 2 and <i>TEF</i>; 3) four fungicolous taxa, i.e., <i>Cylindrodendrum alicantinum</i>, <i>Hypomyces aurantius</i>, <i>Hypomyces rosellus</i>, and <i>Trichothecium roseum</i>, are reported as putative pathogens on cultivated morels for the first time. In addition, the previously reported pathogens of morels, <i>Clonostachys rosea</i>, <i>Clonostachys solani</i>, <i>Hypomyces odoratus</i>, and <i>Pseudodiploospora longispora</i> are also detailed in their symptoms and morphology; 4) the phylogeny and morphology of “<i>Zelopaecilomyces</i>” previously placed within <i>Pseudodiploosporeaceae</i> are re-assessed. “<i>Zelopaecilomyces</i>” is proved to be introduced through a chimerism of gene fragments sourced from two distinct organisms. Consequently, it is recommended that “<i>Zelopaecilomyces</i>” should not be recognised due to the mixed up molecular data in phylogeny and a lack of support from morphological evidence. Furthermore, this study discusses the voucher specimen <i>Paecilomyces penicillatus</i> (CBS 448.69), which may contain two mixed taxa, i.e., <i>Pseudodiploospora longispora</i> and a member of <i>Penicillium</i>. Publications on pathogenic fungi of cultivated mushrooms is sporadically, which leads to a lack of understanding of causal agents. As a follow up to the diseases of morel cultivation, we also review the fungal diseases of cultivated mushrooms reported over the last four decades. More than 130 pathogens affect the growth and development of the main cultivated mushrooms. The taxonomic diversity of these pathogens is high, distributed in 58 genera, 40 families, 20 orders, 12 classes and six phyla. The host infected are from Ascomycota to Basidiomycota, mainly being reported from <i>Agaricus bisporus</i>, <i>Cordyceps militaris</i>, <i>Morchella</i> spp., and <i>Pleurotus</i> spp. This s
蘑菇因其对人类的营养和药用价值而成为重要的生物。随着食用菌种植的扩大,真菌疾病已成为限制其产量的一个主要问题。许多真菌都会导致蘑菇变形或腐烂。在本出版物中,我们报告了在中国栽培桑黄菌过程中发现的真菌疾病,重点是通过形态学和系统发育来描述物种特征。主要发现包括:1)在下菌纲中建立了一个新的科 Albomorchellophilaceae,以及一个新的单型属 Albomorchellophila,模式种为 A. morchellae。分歧时间估计表明,Albomorchellophilaceae 与其姊妹科 Calcarisporiaceae 的分歧时间约为 105 (92-120) MYY。105 (92-120) MYA;2)修订了假地孢科(Hypocreales)的系统发育和形态。该科包含一个假袋孢属。对长孢假双孢菌(Pseudodiploospora longispora)的种内遗传分析表明,菌株间存在显著的碱基差异,特别是在蛋白编码基因 RPB 2 和 TEF 区域;3)首次报道了四个真菌性类群,即 Cylindrodendrum alicantinum、Hypomyces aurantius、Hypomyces rosellus 和 Trichothecium roseum,是栽培羊肚菌的假定病原体。此外,之前报道的羊肚菌病原体 Clonostachys rosea、Clonostachys solani、Hypomyces odoratus 和 Pseudodiploospora longispora 的症状和形态也得到了详细说明;4)重新评估了之前归入 Pseudodiploosporeaceae 的 "Zelopaecilomyces "的系统发育和形态。经证明,"Zelopaecilomyces "是由来自两种不同生物的基因片段嵌合而成的。因此,建议不承认 "Zelopaecilomyces",原因是系统发育中的分子数据混杂,且缺乏形态学证据的支持。此外,本研究讨论的凭证标本 Paecilomyces penicillatus(CBS 448.69)可能包含两个混合类群,即 Pseudodiploospora longispora 和青霉的一个成员。有关栽培蘑菇病原真菌的出版物非常零散,导致人们对病原菌缺乏了解。作为羊肚菌栽培病害的后续研究,我们还回顾了过去四十年中报道的栽培蘑菇真菌病害。影响主要栽培蘑菇生长和发育的病原体超过 130 种。这些病原体的分类多样性很高,分布在 58 属、40 科、20 目、12 类和 6 门中。所感染的宿主从子囊菌界到担子菌界都有,主要是姬松茸、冬虫夏草、莫氏菌属和羊肚菌属。 这项研究不仅丰富了我们目前对栽培蘑菇(尤其是羊肚菌)病原体多样性的了解,还认识到一些类群作为潜在病原体的重要性。分类调查和准确鉴定是了解病原体与蘑菇之间相互作用的最初和关键步骤,并将为蘑菇产业带来更好的疾病管理策略。
{"title":"Species diversity of fungal pathogens on cultivated mushrooms: a case study on morels (Morchella, Pezizales)","authors":"Feng-Ming Yu, Ruvishika S. Jayawardena, Thatsanee Luangharn, Xiang-Yu Zeng, Cui-Jin-Yi Li, Shu-Xin Bao, Hong Ba, De-Qun Zhou, Song-Ming Tang, Kevin D. Hyde, Qi Zhao","doi":"10.1007/s13225-023-00531-6","DOIUrl":"https://doi.org/10.1007/s13225-023-00531-6","url":null,"abstract":"&lt;p&gt;Mushrooms are important organisms because of their human nutritional and medicinal value. With the expansion of the cultivation of edible mushrooms, fungal diseases have become a major problem in limiting their production. Numerous fungi can cause mushroom deformation or rots. In this publication we report on fungal diseases found during &lt;i&gt;Morchella&lt;/i&gt; cultivation in China, with emphasis on morphology and phylogeny to characterise species. The key findings include 1) establishment of a new family &lt;i&gt;Albomorchellophilaceae&lt;/i&gt; in &lt;i&gt;Hypocreales&lt;/i&gt;, and a novel monotypic genus &lt;i&gt;Albomorchellophila&lt;/i&gt; with the type species &lt;i&gt;A. morchellae&lt;/i&gt;. Divergence time estimates indicate that &lt;i&gt;Albomorchellophilaceae&lt;/i&gt; diverged from its sister family &lt;i&gt;Calcarisporiaceae&lt;/i&gt; at ca. 105 (92–120) MYA; 2) the phylogeny and morphology of the family &lt;i&gt;Pseudodiploosporeaceae&lt;/i&gt; (&lt;i&gt;Hypocreales&lt;/i&gt;) is revised. The family contains a single genus &lt;i&gt;Pseudodiploospora&lt;/i&gt;. Intraspecific genetic analyses of &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; reveals significant base differences within strains, especially in the regions of protein-coding genes &lt;i&gt;RPB&lt;/i&gt; 2 and &lt;i&gt;TEF&lt;/i&gt;; 3) four fungicolous taxa, i.e., &lt;i&gt;Cylindrodendrum alicantinum&lt;/i&gt;, &lt;i&gt;Hypomyces aurantius&lt;/i&gt;, &lt;i&gt;Hypomyces rosellus&lt;/i&gt;, and &lt;i&gt;Trichothecium roseum&lt;/i&gt;, are reported as putative pathogens on cultivated morels for the first time. In addition, the previously reported pathogens of morels, &lt;i&gt;Clonostachys rosea&lt;/i&gt;, &lt;i&gt;Clonostachys solani&lt;/i&gt;, &lt;i&gt;Hypomyces odoratus&lt;/i&gt;, and &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; are also detailed in their symptoms and morphology; 4) the phylogeny and morphology of “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” previously placed within &lt;i&gt;Pseudodiploosporeaceae&lt;/i&gt; are re-assessed. “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” is proved to be introduced through a chimerism of gene fragments sourced from two distinct organisms. Consequently, it is recommended that “&lt;i&gt;Zelopaecilomyces&lt;/i&gt;” should not be recognised due to the mixed up molecular data in phylogeny and a lack of support from morphological evidence. Furthermore, this study discusses the voucher specimen &lt;i&gt;Paecilomyces penicillatus&lt;/i&gt; (CBS 448.69), which may contain two mixed taxa, i.e., &lt;i&gt;Pseudodiploospora longispora&lt;/i&gt; and a member of &lt;i&gt;Penicillium&lt;/i&gt;. Publications on pathogenic fungi of cultivated mushrooms is sporadically, which leads to a lack of understanding of causal agents. As a follow up to the diseases of morel cultivation, we also review the fungal diseases of cultivated mushrooms reported over the last four decades. More than 130 pathogens affect the growth and development of the main cultivated mushrooms. The taxonomic diversity of these pathogens is high, distributed in 58 genera, 40 families, 20 orders, 12 classes and six phyla. The host infected are from Ascomycota to Basidiomycota, mainly being reported from &lt;i&gt;Agaricus bisporus&lt;/i&gt;, &lt;i&gt;Cordyceps militaris&lt;/i&gt;, &lt;i&gt;Morchella&lt;/i&gt; spp., and &lt;i&gt;Pleurotus&lt;/i&gt; spp. This s","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"14 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140032232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Diversity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1