Pub Date : 2024-12-19DOI: 10.1007/s13225-024-00541-y
Ishara S. Manawasinghe, Kevin D. Hyde, Dhanushka N. Wanasinghe, Samantha C. Karunarathna, Sajeewa S. N. Maharachchikumbura, Milan C. Samarakoon, Hermann Voglmayr, Ka-Lai Pang, Michael Wai-Lun Chiang, E. B. Gareth Jones, Ramesh K. Saxena, Arun Kumar, Kunhiraman C. Rajeshkumar, Laura Selbmann, Claudia Coleine, Yuwei Hu, A. Martyn Ainsworth, Kare Liimatainen, Tuula Niskanen, Anna Ralaiveloarisoa, Elangovan Arumugam, Kezhocuyi Kezo, Malarvizhi Kaliyaperumal, Sugantha Gunaseelan, Asha J. Dissanayake, Abdul Nasir Khalid, Achala Jeevani Gajanayake, Adam Flakus, Alireza Armand, André Aptroot, Andre Rodrigues, Andrei Tsurykau, Ángela López-Villalba, Antonio Roberto Gomes de Farias, Antonio Sánchez, Aristóteles Góes-Neto, Bruno T. Goto, Carlos A. F. de Souza, Charuwan Chuaseeharonnachai, Chuan-Gen Lin, Cuijinyi Li, Cvetomir M. Denchev, Daniel Guerra-Mateo, Danushka S. Tennakoon, De-Ping Wei, Dominik Begerow, Eduardo Alves, Elisandro Ricardo Drechsler-Santos, Enayra Silva Sousa, Erika V..
<p>This article is the 17th in the Fungal Diversity Notes series which allows the researchers to publish fungal collections with updated reports of fungus-host and fungus-geography. Herein we report 97 taxa with four new genera distributed in three phyla (Ascomycota, Glomeromycota and Mucoromycota), 11 classes, 38 orders and 62 families collected from various regions worldwide. This collection is further classified into taxa from 69 genera with four novel genera namely <i>Jinshana</i>, <i>Lithophyllospora</i>, <i>Parapolyplosphaeria</i> and <i>Stegonsporiicola</i>. Furthermore, 71 new species, 21 new records, one new combination and four novel phylogenetic placements are provided. The new species comprise <i>Acrocalymma estuarinum, Aggregatorygma isidiatum, Alleppeysporonites elsikii, Amphibambusa aquatica, Apiospora hongheensis, Arthrobotrys tachengensis, Calonectria potisiana, Collariella hongheensis, Colletotrichum squamosae, Corynespora chengduensis, Diaporthe beijingensis, Dicellaesporites plicatus, Dicellaesporites verrucatus, Dictyoarthrinium endophyticum, Distoseptispora chiangraiensis, Dothiora eucalypti, Epicoccum indicum, Exesisporites chandrae, Fitzroyomyces pseudopandanicola, Fomitiporia exigua, Fomitiporia rondonii, Fulvifomes subthailandicus, Gigaspora siqueirae, Gymnopus ailaoensis, Hyalorbilia yunnanensis, Hygrocybe minimiholatra, H. mitsinjoensis, H. parviholatra, H. solis, H. vintsy, Helicogermslita kunmingensis, Jinshana tangtangiae, Kirschsteiniothelia dujuanhuensis, Lamproderma subcristatum, Leucoagaricus madagascarensis, Leucocoprinus mantadiaensis, Lithophyllospora australis, Marasmius qujingensis, Melomastia aquilariae, Monoporisporites jansoniusii, M. pattersonii, Monoporisporites valdiyae, Mucispora maesotensis, Mucor soli, Muyocopron yunnanensis, Nigrospora tomentosae, Ocellularia psorirregularis, Ophiocordyceps duyunensis, Oxneriaria nigrodisca, Oxydothis aquatica, O. filiforme, Phacidiella xishuangbannaensis, Phlebiopsis subgriseofuscescens, Pleurothecium takense, Pleurotus tuber-regium, Pseudochaetosphaeronema puerensis, Pseudodactylaria guttulate, Racheliella chinensis, Rhexoacrodictys fangensis, Roussoella neoaquatica, Rubroboletus pruinosus, Sanghuangporus subzonatus, Scytalidium assmuthi, Shrungabeeja kudremukhensis, Spirographa skorinae, Stanjehughesia bambusicola, Stegonsporiicola aurantiaca, Umbelopsis hingganensis, Vararia tenuata, Verruconis pakchongensis, Wongia bandungensis,</i> and <i>Zygosporium cymodoceae</i>. The new combination is <i>Parapolyplosphaeria thailandica</i> (≡ <i>Polyplosphaeria thailandica</i>). The 21 new hosts, geographical and habitat records comprise <i>Acrocalymma fici, Apiculospora spartii, Aspergillus subramanianii, Camposporium ramosum, Clonostachys rogersoniana, Colletotrichum brevisporum, C. plurivorum, Collybiopsis gibbosa, Dictyosporium tratense, Distoseptispora adscendens, Exosporium livistonae, Ganoderma gibbosum, Graphis mikuraensis, Gymnosporangium paraphysatum, Lasiodipl
{"title":"Fungal diversity notes 1818–1918: taxonomic and phylogenetic contributions on genera and species of fungi","authors":"Ishara S. Manawasinghe, Kevin D. Hyde, Dhanushka N. Wanasinghe, Samantha C. Karunarathna, Sajeewa S. N. Maharachchikumbura, Milan C. Samarakoon, Hermann Voglmayr, Ka-Lai Pang, Michael Wai-Lun Chiang, E. B. Gareth Jones, Ramesh K. Saxena, Arun Kumar, Kunhiraman C. Rajeshkumar, Laura Selbmann, Claudia Coleine, Yuwei Hu, A. Martyn Ainsworth, Kare Liimatainen, Tuula Niskanen, Anna Ralaiveloarisoa, Elangovan Arumugam, Kezhocuyi Kezo, Malarvizhi Kaliyaperumal, Sugantha Gunaseelan, Asha J. Dissanayake, Abdul Nasir Khalid, Achala Jeevani Gajanayake, Adam Flakus, Alireza Armand, André Aptroot, Andre Rodrigues, Andrei Tsurykau, Ángela López-Villalba, Antonio Roberto Gomes de Farias, Antonio Sánchez, Aristóteles Góes-Neto, Bruno T. Goto, Carlos A. F. de Souza, Charuwan Chuaseeharonnachai, Chuan-Gen Lin, Cuijinyi Li, Cvetomir M. Denchev, Daniel Guerra-Mateo, Danushka S. Tennakoon, De-Ping Wei, Dominik Begerow, Eduardo Alves, Elisandro Ricardo Drechsler-Santos, Enayra Silva Sousa, Erika V..","doi":"10.1007/s13225-024-00541-y","DOIUrl":"https://doi.org/10.1007/s13225-024-00541-y","url":null,"abstract":"<p>This article is the 17th in the Fungal Diversity Notes series which allows the researchers to publish fungal collections with updated reports of fungus-host and fungus-geography. Herein we report 97 taxa with four new genera distributed in three phyla (Ascomycota, Glomeromycota and Mucoromycota), 11 classes, 38 orders and 62 families collected from various regions worldwide. This collection is further classified into taxa from 69 genera with four novel genera namely <i>Jinshana</i>, <i>Lithophyllospora</i>, <i>Parapolyplosphaeria</i> and <i>Stegonsporiicola</i>. Furthermore, 71 new species, 21 new records, one new combination and four novel phylogenetic placements are provided. The new species comprise <i>Acrocalymma estuarinum, Aggregatorygma isidiatum, Alleppeysporonites elsikii, Amphibambusa aquatica, Apiospora hongheensis, Arthrobotrys tachengensis, Calonectria potisiana, Collariella hongheensis, Colletotrichum squamosae, Corynespora chengduensis, Diaporthe beijingensis, Dicellaesporites plicatus, Dicellaesporites verrucatus, Dictyoarthrinium endophyticum, Distoseptispora chiangraiensis, Dothiora eucalypti, Epicoccum indicum, Exesisporites chandrae, Fitzroyomyces pseudopandanicola, Fomitiporia exigua, Fomitiporia rondonii, Fulvifomes subthailandicus, Gigaspora siqueirae, Gymnopus ailaoensis, Hyalorbilia yunnanensis, Hygrocybe minimiholatra, H. mitsinjoensis, H. parviholatra, H. solis, H. vintsy, Helicogermslita kunmingensis, Jinshana tangtangiae, Kirschsteiniothelia dujuanhuensis, Lamproderma subcristatum, Leucoagaricus madagascarensis, Leucocoprinus mantadiaensis, Lithophyllospora australis, Marasmius qujingensis, Melomastia aquilariae, Monoporisporites jansoniusii, M. pattersonii, Monoporisporites valdiyae, Mucispora maesotensis, Mucor soli, Muyocopron yunnanensis, Nigrospora tomentosae, Ocellularia psorirregularis, Ophiocordyceps duyunensis, Oxneriaria nigrodisca, Oxydothis aquatica, O. filiforme, Phacidiella xishuangbannaensis, Phlebiopsis subgriseofuscescens, Pleurothecium takense, Pleurotus tuber-regium, Pseudochaetosphaeronema puerensis, Pseudodactylaria guttulate, Racheliella chinensis, Rhexoacrodictys fangensis, Roussoella neoaquatica, Rubroboletus pruinosus, Sanghuangporus subzonatus, Scytalidium assmuthi, Shrungabeeja kudremukhensis, Spirographa skorinae, Stanjehughesia bambusicola, Stegonsporiicola aurantiaca, Umbelopsis hingganensis, Vararia tenuata, Verruconis pakchongensis, Wongia bandungensis,</i> and <i>Zygosporium cymodoceae</i>. The new combination is <i>Parapolyplosphaeria thailandica</i> (≡ <i>Polyplosphaeria thailandica</i>). The 21 new hosts, geographical and habitat records comprise <i>Acrocalymma fici, Apiculospora spartii, Aspergillus subramanianii, Camposporium ramosum, Clonostachys rogersoniana, Colletotrichum brevisporum, C. plurivorum, Collybiopsis gibbosa, Dictyosporium tratense, Distoseptispora adscendens, Exosporium livistonae, Ganoderma gibbosum, Graphis mikuraensis, Gymnosporangium paraphysatum, Lasiodipl","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"24 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-16DOI: 10.1007/s13225-024-00544-9
Jian Ma, Kevin D. Hyde, Saowaluck Tibpromma, Deecksha Gomdola, Ning-Guo Liu, Chada Norphanphoun, Dan-Feng Bao, Saranyaphat Boonmee, Xing-Juan Xiao, Li-Juan Zhang, Zong-Long Luo, Qi Zhao, Nakarin Suwannarach, Samantha C. Karunarathna, Jian-Kui Liu, Yong-Zhong Lu
<p>Helicosporous hyphomycetes are a fungal group with similar coiled or spiral conidial morphology but significant differences in genetic information, resulting in them being distributed in different phyla, classes, orders, and families. However, there are no comprehensive studies for this group. In this study, we have systematically organized the helicosporous taxa, revised their classification and provided a modern taxonomic framework based on morphology and phylogeny. This group encompasses 112 genera and 474 species distributed in three phyla, ten classes, 20 orders and 25 families, while some taxa are classified as <i>incertae sedis</i> within Ascomycota. The illustrations and notes for all helicosporous genera and the drawings of the type or representative species that have not been collected and examined are provided. Additionally, a phylogenetic taxonomic distribution of helicosporous families based on maximum likelihood analysis of LSU, ITS, SSU, <i>tef</i>1-α, and <i>rpb</i>2 sequence data is provided. In addition, we obtained 160 new collections from China and Thailand. Based on molecular evidence and morphological characteristics, six new helicosporous genera viz<i>. Acrohelicosporium</i>, <i>Hyalohelicoon</i>, <i>Hyalohelisphora</i>, <i>Hyalotubeufia</i>, <i>Pseudocirrenalia</i>, and <i>Pseudohelicosporium</i> and 53 new species, viz<i>. Acrohelicosporium abundatum</i>, <i>A</i>. <i>aquaticum</i>,<i> A</i>. <i>guizhouense</i>,<i> A</i>. <i>viridisporum</i>, <i>Berkleasmium hainanense</i>, <i>Helicoma brunneum</i>, <i>H</i>. <i>astrictum</i>,<i> H</i>. <i>dipterocarpi</i>,<i> H</i>. <i>guizhouense</i>,<i> H</i>. <i>sclerotiferum</i>,<i> H</i>. <i>tropicum</i>,<i> H</i>. <i>yinggelingense</i>, <i>Helicoma yunnanense</i>, <i>Helicosporium acropleurogenum</i>, <i>H. brunneisporum</i>,<i> H</i>. <i>changjiangense</i>,<i> H</i>. <i>jiangkouense</i>,<i> H</i>. <i>latisporum</i>,<i> H</i>. <i>ramosiphorum</i>, <i>Helicotubeufia laxisporum</i>, <i>Hyalohelicoon multiseptatum</i>, <i>Hyalohelisphora lignicola</i>, <i>Neohelicomyces acropleurogenus</i>, <i>N</i>. <i>aseptatus</i>, <i>N</i>. <i>edgeworthiae</i>, <i>N</i>. <i>guttulatus</i>, <i>N</i>. <i>lignicola</i>,<i> N</i>. <i>macrosporus</i>,<i> N</i>. <i>qixingyaensis</i>,<i> N</i>. <i>xiayadongensis</i>,<i> N</i>. <i>yunnanensis</i>, <i>N</i>. <i>baihualingense</i>, <i>Neohelicosporium hainanense</i>, <i>N</i>. <i>jianfenglingense</i>,<i> N</i>. <i>latisporum</i>, <i>Parahelicomyces latisporus</i>, <i>Pa</i>. <i>laxisporus</i>, <i>Pa</i>. <i>parvisporus</i>, <i>Paratrimmatostroma helicosporum</i>, <i>Pleurohelicosporium brunneisporum</i>, <i>Pl</i>. <i>hyalosporum</i>, <i>Pl</i>. <i>multiseptatum</i>, <i>Pseudocirrenalia aquialpina</i>, <i>Pseudohelicosporium irregular</i>, <i>Ps</i>. <i>laxisporum</i>, <i>Pseudotubeufia dematiolaxispora</i>, <i>Sclerococcum astrictum</i>, <i>Tubeufia acropleurogena</i>, <i>T</i>. <i>baomeilingensis</i>, <i>T</i>. <i>denticulate</i>, <i>T</i>. <i>subrenis
{"title":"Taxonomy and systematics of lignicolous helicosporous hyphomycetes","authors":"Jian Ma, Kevin D. Hyde, Saowaluck Tibpromma, Deecksha Gomdola, Ning-Guo Liu, Chada Norphanphoun, Dan-Feng Bao, Saranyaphat Boonmee, Xing-Juan Xiao, Li-Juan Zhang, Zong-Long Luo, Qi Zhao, Nakarin Suwannarach, Samantha C. Karunarathna, Jian-Kui Liu, Yong-Zhong Lu","doi":"10.1007/s13225-024-00544-9","DOIUrl":"https://doi.org/10.1007/s13225-024-00544-9","url":null,"abstract":"<p>Helicosporous hyphomycetes are a fungal group with similar coiled or spiral conidial morphology but significant differences in genetic information, resulting in them being distributed in different phyla, classes, orders, and families. However, there are no comprehensive studies for this group. In this study, we have systematically organized the helicosporous taxa, revised their classification and provided a modern taxonomic framework based on morphology and phylogeny. This group encompasses 112 genera and 474 species distributed in three phyla, ten classes, 20 orders and 25 families, while some taxa are classified as <i>incertae sedis</i> within Ascomycota. The illustrations and notes for all helicosporous genera and the drawings of the type or representative species that have not been collected and examined are provided. Additionally, a phylogenetic taxonomic distribution of helicosporous families based on maximum likelihood analysis of LSU, ITS, SSU, <i>tef</i>1-α, and <i>rpb</i>2 sequence data is provided. In addition, we obtained 160 new collections from China and Thailand. Based on molecular evidence and morphological characteristics, six new helicosporous genera viz<i>. Acrohelicosporium</i>, <i>Hyalohelicoon</i>, <i>Hyalohelisphora</i>, <i>Hyalotubeufia</i>, <i>Pseudocirrenalia</i>, and <i>Pseudohelicosporium</i> and 53 new species, viz<i>. Acrohelicosporium abundatum</i>, <i>A</i>. <i>aquaticum</i>,<i> A</i>. <i>guizhouense</i>,<i> A</i>. <i>viridisporum</i>, <i>Berkleasmium hainanense</i>, <i>Helicoma brunneum</i>, <i>H</i>. <i>astrictum</i>,<i> H</i>. <i>dipterocarpi</i>,<i> H</i>. <i>guizhouense</i>,<i> H</i>. <i>sclerotiferum</i>,<i> H</i>. <i>tropicum</i>,<i> H</i>. <i>yinggelingense</i>, <i>Helicoma yunnanense</i>, <i>Helicosporium acropleurogenum</i>, <i>H. brunneisporum</i>,<i> H</i>. <i>changjiangense</i>,<i> H</i>. <i>jiangkouense</i>,<i> H</i>. <i>latisporum</i>,<i> H</i>. <i>ramosiphorum</i>, <i>Helicotubeufia laxisporum</i>, <i>Hyalohelicoon multiseptatum</i>, <i>Hyalohelisphora lignicola</i>, <i>Neohelicomyces acropleurogenus</i>, <i>N</i>. <i>aseptatus</i>, <i>N</i>. <i>edgeworthiae</i>, <i>N</i>. <i>guttulatus</i>, <i>N</i>. <i>lignicola</i>,<i> N</i>. <i>macrosporus</i>,<i> N</i>. <i>qixingyaensis</i>,<i> N</i>. <i>xiayadongensis</i>,<i> N</i>. <i>yunnanensis</i>, <i>N</i>. <i>baihualingense</i>, <i>Neohelicosporium hainanense</i>, <i>N</i>. <i>jianfenglingense</i>,<i> N</i>. <i>latisporum</i>, <i>Parahelicomyces latisporus</i>, <i>Pa</i>. <i>laxisporus</i>, <i>Pa</i>. <i>parvisporus</i>, <i>Paratrimmatostroma helicosporum</i>, <i>Pleurohelicosporium brunneisporum</i>, <i>Pl</i>. <i>hyalosporum</i>, <i>Pl</i>. <i>multiseptatum</i>, <i>Pseudocirrenalia aquialpina</i>, <i>Pseudohelicosporium irregular</i>, <i>Ps</i>. <i>laxisporum</i>, <i>Pseudotubeufia dematiolaxispora</i>, <i>Sclerococcum astrictum</i>, <i>Tubeufia acropleurogena</i>, <i>T</i>. <i>baomeilingensis</i>, <i>T</i>. <i>denticulate</i>, <i>T</i>. <i>subrenis","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"35 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1007/s13225-024-00546-7
Zheng Wang, Lingyu Liang, Huimin Wang, Cony Decock, Quan Lu
Ips is a genus of bark beetles found throughout the Northern Hemisphere, many of which are highly destructive to coniferous forests and plantations. Fungal symbionts, especially ophiostomatoid fungi, have contributed to the success of Ips bark beetles. Recently, climate change accelerated tree mortality caused by bark beetles and their fungal symbionts. However, the knowledge of ophiostomatoid fungi associated with Ips bark beetles is inadequate in China. Therefore, this study investigated the ophiostomatoid fungal communities associated with different Ips bark beetles from various coniferous forest areas of China. A total of 14,512 ophiostomatoid fungal strains were isolated from 1265 vigorous adult beetles and 826 fresh galleries belonging to 11 Ips species infesting 16 coniferous tree species, including pines, spruces, and larches, from 42 sampling sites in nine provinces or autonomous regions in northeast, northwest and southwest China. Based on a combination of morphological features and phylogenetic analysis, 71 taxa belonging to eight genera were identified (Ceratocystiopsis, Graphilbum, Grosmannia, Leptographium, Masuyamyces, and Ophiostoma in Ophiostomatales; Endoconidiophora and Graphium in Microascales), of which 38 species were described as new. Comparing patterns of fungal assemblages indicated that fungal symbionts genetically co-differentiated with their vectors. Host trees possibly reinforce the coarse species-specific association between ophiostomatoid fungi and Ips bark beetles. This study further demonstrates the high diversity of ophiostomatoid fungi associated with Ips bark beetles and provides insights into their symbiotic associations.
Ips是一种遍布北半球的树皮甲虫属,其中许多对针叶林和种植园具有高度破坏性。真菌共生体,特别是类蛇口真菌,对Ips树皮甲虫的成功做出了贡献。最近,气候变化加速了由树皮甲虫及其真菌共生体引起的树木死亡。然而,国内对与Ips树皮甲虫相关的类蛇口真菌的认识还不充分。因此,本研究调查了中国不同针叶林地区不同Ips树皮甲虫相关的类蛇口真菌群落。在东北、西北和西南9个省(自治区)的42个采样点,从11种成虫1265株和826株鲜虫中分离出14512株类蛇口真菌,侵染松树、云杉、落叶松等16种针叶树。基于形态学特征和系统发育分析,鉴定出8属71个类群(蛇鼻藿属中的Ceratocystiopsis、Graphilbum、Grosmannia、Leptographium、Masuyamyces和Ophiostoma);微鳞片内内生孢子虫属(Endoconidiophora)和石墨属(grapum in microas鳞片),其中38种为新种。真菌组合模式的比较表明,真菌共生体与其载体存在共分化。寄主树可能加强了类蛇口真菌和Ips树皮甲虫之间的粗略的物种特异性联系。该研究进一步证明了与Ips树皮甲虫相关的类蛇口真菌的高度多样性,并为它们的共生关系提供了见解。
{"title":"Ophiostomatoid fungi associated with Ips bark beetles in China","authors":"Zheng Wang, Lingyu Liang, Huimin Wang, Cony Decock, Quan Lu","doi":"10.1007/s13225-024-00546-7","DOIUrl":"https://doi.org/10.1007/s13225-024-00546-7","url":null,"abstract":"<p><i>Ips</i> is a genus of bark beetles found throughout the Northern Hemisphere, many of which are highly destructive to coniferous forests and plantations. Fungal symbionts, especially ophiostomatoid fungi, have contributed to the success of <i>Ips</i> bark beetles. Recently, climate change accelerated tree mortality caused by bark beetles and their fungal symbionts. However, the knowledge of ophiostomatoid fungi associated with <i>Ips</i> bark beetles is inadequate in China. Therefore, this study investigated the ophiostomatoid fungal communities associated with different <i>Ips</i> bark beetles from various coniferous forest areas of China. A total of 14,512 ophiostomatoid fungal strains were isolated from 1265 vigorous adult beetles and 826 fresh galleries belonging to 11 <i>Ips</i> species infesting 16 coniferous tree species, including pines, spruces, and larches, from 42 sampling sites in nine provinces or autonomous regions in northeast, northwest and southwest China. Based on a combination of morphological features and phylogenetic analysis, 71 taxa belonging to eight genera were identified (<i>Ceratocystiopsis</i>, <i>Graphilbum</i>, <i>Grosmannia</i>, <i>Leptographium</i>, <i>Masuyamyces</i>, and <i>Ophiostoma</i> in Ophiostomatales; <i>Endoconidiophora</i> and <i>Graphium</i> in Microascales), of which 38 species were described as new. Comparing patterns of fungal assemblages indicated that fungal symbionts genetically co-differentiated with their vectors. Host trees possibly reinforce the coarse species-specific association between ophiostomatoid fungi and <i>Ips</i> bark beetles. This study further demonstrates the high diversity of ophiostomatoid fungi associated with <i>Ips</i> bark beetles and provides insights into their symbiotic associations.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"19 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1007/s13225-024-00539-6
Ning-Guo Liu, Kevin D. Hyde, Ya-Ru Sun, D. Jayarama Bhat, E. B. Gareth Jones, Juangjun Jumpathong, Chuan-Gen Lin, Yong-Zhong Lu, Jing Yang, Ling-Ling Liu, Zuo-Yi Liu, Jian-Kui Liu
Hyphomycetes are asexually reproducing parts in a fungal life cycle, and is an artificial classification. Hyphomycetes are fungi with diverse lifestyles, including saprobes, endophytes, plant and animal pathogens, hyperparasites, lichenized forms and extremophiles. Traditionally, morphological characters have been used to identify and classify hyphomycetes, which has led to many taxonomic controversies. Modern molecular methods based on DNA sequence data have developed a more reliable and natural classification of hyphomycetes. The present study revises the taxonomy of the brown-spored hyphomycetes based on both morphology and phylogeny. In total, 1,041 genera with brief notes are provided. Of these, 1,032 genera belong to Ascomycota (Dothideomycetes: 362; Eurotiomycetes: 34; Leotiomycetes: 22; Pezizomycetes: 7; Sordariomycetes: 210; Ascomycota genera incertae sedis: 397), and nine genera belong to Basidiomycota. In addition, 363 brown-spored hyphomycetous genera published since 2010 are listed. Multi-locus phylogeny, including 658 brown-spored hyphomycete genera within Ascomycota, are carried out using 28S nrDNA, 18S nrDNA and RNA polymerase II second largest subunit (rpb2), and the results show that 374 genera are phylogenetically placed in Dothideomycetes, 39 genera in Eurotiomycetes, 26 genera in Leotiomycetes, 6 genera in Pezizomycetes and 213 genera in Sordariomycetes. Based on the morphology and multi-gene phylogeny, 45 fresh collections are described in this study, including seven new genera, viz. Murihylinia, Pseudobrachysporiella, Saprosporodochifer, Solitariconidiophora, Tenebrosynnematica, Xenoberkleasmium, Xenostanjehughesia; 17 new species, viz. Acrodictys thailandica, Alfaria fusiformis, Conioscypha punctiformis, Gamsomyces breve, Murihylinia guizhouensis, Parafuscosporella atricolor, Pleocatenata thailandica, Polyplosphaeria appendiculata, Pseudobrachysporiella pyriforme, Saprosporodochifer fuscus, Solitariconidiophora guizhouensis, Sporidesmiella obovoidispora, Stachybotrys ellipsoidea, Tenebrosynnematica obclavata, Vanakripa obovoidea, Xenoberkleasmium chiangraiense, Yunnanomyces muriformis; one new combination, viz. Xenostanjehughesia polypora; nine new records, viz. Aquatisphaeria thailandica, Bahusandhika indica, Corynespora submersa, Fusariella sinensis, Helicodochium aquaticum, Pleopunctum ellipsoideum, Rhexoacrodictys erecta, Vikalpa dujuanhuensis, Virgaria nigra. Detailed descriptions and morphological illustrations are provided for these new taxa. Current taxonomic difficulties are discussed.
{"title":"Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes","authors":"Ning-Guo Liu, Kevin D. Hyde, Ya-Ru Sun, D. Jayarama Bhat, E. B. Gareth Jones, Juangjun Jumpathong, Chuan-Gen Lin, Yong-Zhong Lu, Jing Yang, Ling-Ling Liu, Zuo-Yi Liu, Jian-Kui Liu","doi":"10.1007/s13225-024-00539-6","DOIUrl":"https://doi.org/10.1007/s13225-024-00539-6","url":null,"abstract":"<p>Hyphomycetes are asexually reproducing parts in a fungal life cycle, and is an artificial classification. Hyphomycetes are fungi with diverse lifestyles, including saprobes, endophytes, plant and animal pathogens, hyperparasites, lichenized forms and extremophiles. Traditionally, morphological characters have been used to identify and classify hyphomycetes, which has led to many taxonomic controversies. Modern molecular methods based on DNA sequence data have developed a more reliable and natural classification of hyphomycetes. The present study revises the taxonomy of the brown-spored hyphomycetes based on both morphology and phylogeny. In total, 1,041 genera with brief notes are provided. Of these, 1,032 genera belong to <i>Ascomycota</i> (<i>Dothideomycetes</i>: 362; <i>Eurotiomycetes</i>: 34; <i>Leotiomycetes</i>: 22; <i>Pezizomycetes</i>: 7; <i>Sordariomycetes</i>: 210; <i>Ascomycota</i> genera <i>incertae sedis</i>: 397), and nine genera belong to <i>Basidiomycota</i>. In addition, 363 brown-spored hyphomycetous genera published since 2010 are listed. Multi-locus phylogeny, including 658 brown-spored hyphomycete genera within <i>Ascomycota</i>, are carried out using 28S nrDNA, 18S nrDNA and RNA polymerase II second largest subunit (<i>rpb2</i>), and the results show that 374 genera are phylogenetically placed in <i>Dothideomycetes</i>, 39 genera in <i>Eurotiomycetes</i>, 26 genera in <i>Leotiomycetes</i>, 6 genera in <i>Pezizomycetes</i> and 213 genera in <i>Sordariomycetes</i>. Based on the morphology and multi-gene phylogeny, 45 fresh collections are described in this study, including seven new genera, viz<i>. Murihylinia</i>, <i>Pseudobrachysporiella</i>, <i>Saprosporodochifer</i>, <i>Solitariconidiophora</i>, <i>Tenebrosynnematica</i>, <i>Xenoberkleasmium</i>, <i>Xenostanjehughesia</i>; 17 new species, viz. <i>Acrodictys thailandica</i>, <i>Alfaria fusiformis</i>, <i>Conioscypha punctiformis</i>, <i>Gamsomyces breve</i>, <i>Murihylinia guizhouensis</i>, <i>Parafuscosporella atricolor</i>, <i>Pleocatenata thailandica</i>, <i>Polyplosphaeria appendiculata</i>, <i>Pseudobrachysporiella pyriforme</i>, <i>Saprosporodochifer fuscus</i>, <i>Solitariconidiophora guizhouensis</i>, <i>Sporidesmiella obovoidispora</i>, <i>Stachybotrys ellipsoidea</i>, <i>Tenebrosynnematica obclavata</i>, <i>Vanakripa obovoidea</i>, <i>Xenoberkleasmium chiangraiense</i>, <i>Yunnanomyces muriformis</i>; one new combination, viz. <i>Xenostanjehughesia polypora</i>; nine new records, viz. <i>Aquatisphaeria thailandica</i>, <i>Bahusandhika indica</i>, <i>Corynespora submersa</i>, <i>Fusariella sinensis</i>, <i>Helicodochium aquaticum</i>, <i>Pleopunctum ellipsoideum</i>, <i>Rhexoacrodictys erecta</i>, <i>Vikalpa dujuanhuensis</i>, <i>Virgaria nigra</i>. Detailed descriptions and morphological illustrations are provided for these new taxa. Current taxonomic difficulties are discussed.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"37 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s13225-024-00543-w
Cheyenne E. Stratton, Sara A. Bolds, Lindsey S. Reisinger, Donald C. Behringer, Amjad Khalaf, Jamie Bojko
The Microsporidia, an often overlooked fungal lineage, exhibit increasing diversity and taxonomic understanding with the use of genomic techniques. They are obligate parasites infecting a diversity of hosts, including crustaceans. Crustacea are, in essence, ancient insects and their relationship with the Microsporidia is both diverse and convoluted. Relationships between crayfish and their microsporidian parasites display geospatial and taxonomic diversity. Through classical (histological, ultrastructural, developmental) and genomic (phylogenetic, phylogenomic) approaches, we expand the known diversity of crayfish-infecting microsporidia into the genus Nosema by describing three novel species from North America: Nosema astafloridana n. sp. infecting Procambarus pictus and Procambarus spiculifer, Nosema rusticus n. sp. infecting Faxonius rusticus, and Nosema wisconsinii n. sp. infecting Faxonius propinquus and Faxonius virilis. Additionally, we provide SSU sequence data for further Nosema diversity from Procambarus clarkii and Pacifasticus gambelii. The taxonomy of aquatic crustacean-infecting Nosema have been under scrutiny among microsporidiologists—using genomic data we solidify this systematic relationship. Our genomic data reveal phylogenomic divergence between terrestrial insect-infecting Nosema and aquatic crustacean-infecting Nosema but place our novel species within the Nosema. Comparative genomic analysis reveal that Nosema rusticus n. sp. is a tetraploid organism, making this the first known polyploid from the genus Nosema. Annotation of the genomic data highlight that crayfish-infecting Nosema have distinct proteomic differences when compared to amphipod and insect-infecting microsporidians. Alongside the new diversity uncovered and genome-supported systematics, we consider the role of these new ‘invasive’ parasites in biological invasion systems, exploring their relationship with their invasive hosts.
小孢子虫是一个经常被忽视的真菌门类,随着基因组学技术的应用,其多样性和分类学知识日益丰富。它们是感染包括甲壳动物在内的多种宿主的强制性寄生虫。甲壳动物本质上是古老的昆虫,它们与小孢子虫的关系既多样又复杂。小龙虾与其小孢子虫寄生虫之间的关系呈现出地理空间和分类学上的多样性。通过经典(组织学、超微结构学、发育学)和基因组学(系统发育学、系统基因组学)方法,我们描述了来自北美洲的三个新物种,从而扩展了小龙虾感染小孢子虫属的已知多样性:感染Procambarus pictus和Procambarus spiculifer的Nosema astafloridana n. sp.、感染Faxonius rusticus的Nosema rusticus n. sp.以及感染Faxonius propinquus和Faxonius virilis的Nosema wisconsinii n. sp.。此外,我们还提供了SSU序列数据,以进一步丰富Procambarus clarkii和Pacifasticus gambelii的Nosema多样性。水生甲壳动物感染的诺斯马氏菌的分类一直受到微孢子虫学家的关注--利用基因组数据,我们巩固了这种系统关系。我们的基因组数据揭示了陆生昆虫感染诺斯马属真菌和水生甲壳动物感染诺斯马属真菌之间的系统发育分化,但将我们的新物种归入了诺斯马属真菌。比较基因组分析表明,Nosema rusticus n. sp.是一种四倍体生物,是已知的第一个Nosema属多倍体。对基因组数据的注释突出表明,与片脚类动物和昆虫感染的微孢子虫相比,小龙虾感染的诺斯马属具有明显的蛋白质组差异。除了发现新的多样性和基因组支持的系统学之外,我们还考虑了这些新的 "入侵 "寄生虫在生物入侵系统中的作用,探讨了它们与入侵宿主的关系。
{"title":"Microsporidia and invertebrate hosts: genome-informed taxonomy surrounding a new lineage of crayfish-infecting Nosema spp. (Nosematida)","authors":"Cheyenne E. Stratton, Sara A. Bolds, Lindsey S. Reisinger, Donald C. Behringer, Amjad Khalaf, Jamie Bojko","doi":"10.1007/s13225-024-00543-w","DOIUrl":"https://doi.org/10.1007/s13225-024-00543-w","url":null,"abstract":"<p>The Microsporidia, an often overlooked fungal lineage, exhibit increasing diversity and taxonomic understanding with the use of genomic techniques. They are obligate parasites infecting a diversity of hosts, including crustaceans. Crustacea are, in essence, ancient insects and their relationship with the Microsporidia is both diverse and convoluted. Relationships between crayfish and their microsporidian parasites display geospatial and taxonomic diversity. Through classical (histological, ultrastructural, developmental) and genomic (phylogenetic, phylogenomic) approaches, we expand the known diversity of crayfish-infecting microsporidia into the genus <i>Nosema</i> by describing three novel species from North America: <i>Nosema astafloridana</i> n. sp. infecting <i>Procambarus pictus</i> and <i>Procambarus spiculifer</i>, <i>Nosema rusticus</i> n. sp. infecting <i>Faxonius rusticus</i>, and <i>Nosema wisconsinii</i> n. sp. infecting <i>Faxonius propinquus</i> and <i>Faxonius virilis</i>. Additionally, we provide SSU sequence data for further <i>Nosema</i> diversity from <i>Procambarus clarkii</i> and <i>Pacifasticus gambelii</i>. The taxonomy of aquatic crustacean-infecting <i>Nosema</i> have been under scrutiny among microsporidiologists—using genomic data we solidify this systematic relationship. Our genomic data reveal phylogenomic divergence between terrestrial insect-infecting <i>Nosema</i> and aquatic crustacean-infecting <i>Nosema</i> but place our novel species within the <i>Nosema</i>. Comparative genomic analysis reveal that <i>Nosema rusticus</i> n. sp. is a tetraploid organism, making this the first known polyploid from the genus <i>Nosema</i>. Annotation of the genomic data highlight that crayfish-infecting <i>Nosema</i> have distinct proteomic differences when compared to amphipod and insect-infecting microsporidians. Alongside the new diversity uncovered and genome-supported systematics, we consider the role of these new ‘invasive’ parasites in biological invasion systems, exploring their relationship with their invasive hosts.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"19 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s13225-024-00545-8
Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe
Estimates of global fungal diversity have varied widely, suggesting a range from fewer than one million to over 10 million species, with each of the estimates drawing data from various criteria. In 2022, Fungal Diversity published a special issue on fungal numbers. It had been hoped that the editorial would provide a more accurate account of the numbers of fungi. Instead, it was concluded that this was not possible based on present evidence and, some of the data necessary for accurate assessments was put forward, and the present paper expands on this short article. The review first looks at estimates of fungal numbers and what these estimates are based on. It then presents future research needs that will help us to gain a more accurate estimate of fungal numbers. This includes work that needs to be done in tropical rainforests, where the greatest diversity is expected, where whole rainforests, canopy diversity, and palm fungi are addressed. Case studies for lichens and associated fungi, soil and litter fungi, evidence from particle filtration, freshwater fungi, marine fungi, mushrooms, and yeasts will also be given. Once we have such information, we can obtain a more accurate estimate of fungal numbers.
{"title":"Fungal numbers: global needs for a realistic assessment","authors":"Kevin D. Hyde, Alwasel Saleh, Herbert Dustin R. Aumentado, Teun Boekhout, Ishika Bera, Sabin Khyaju, Chitrabhanu S. Bhunjun, K. W. Thilini Chethana, Chayanard Phukhamsakda, Mingkwan Doilom, Vinodhini Thiyagaraja, Peter E. Mortimer, Sajeewa S. N. Maharachchikumbura, Sinang Hongsanan, Ruvishika S. Jayawardena, Wei Dong, Rajesh Jeewon, Fatimah Al-Otibi, Subodini N. Wijesinghe, Dhanushka N. Wanasinghe","doi":"10.1007/s13225-024-00545-8","DOIUrl":"https://doi.org/10.1007/s13225-024-00545-8","url":null,"abstract":"<p>Estimates of global fungal diversity have varied widely, suggesting a range from fewer than one million to over 10 million species, with each of the estimates drawing data from various criteria. In 2022, <i>Fungal Diversity</i> published a special issue on fungal numbers. It had been hoped that the editorial would provide a more accurate account of the numbers of fungi. Instead, it was concluded that this was not possible based on present evidence and, some of the data necessary for accurate assessments was put forward, and the present paper expands on this short article. The review first looks at estimates of fungal numbers and what these estimates are based on. It then presents future research needs that will help us to gain a more accurate estimate of fungal numbers. This includes work that needs to be done in tropical rainforests, where the greatest diversity is expected, where whole rainforests, canopy diversity, and palm fungi are addressed. Case studies for lichens and associated fungi, soil and litter fungi, evidence from particle filtration, freshwater fungi, marine fungi, mushrooms, and yeasts will also be given. Once we have such information, we can obtain a more accurate estimate of fungal numbers.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"140 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s13225-024-00540-z
Nalin N. Wijayawardene, Kevin D. Hyde, Kirill V. Mikhailov, Gábor Péter, André Aptroot, Carmen L. A. Pires-Zottarelli, Bruno T. Goto, Yuri S. Tokarev, Danny Haelewaters, Samantha C. Karunarathna, Paul M. Kirk, André L. C. M. de A. Santiago, Ramesh K. Saxena, Nathan Schoutteten, Madhara K. Wimalasena, Vladimir V. Aleoshin, Abdullah M. S. Al-Hatmi, Kahandawa G. S. U. Ariyawansa, Amanda R. Assunção, Thushara C. Bamunuarachchige, Hans-Otto Baral, D. Jayarama Bhat, Janusz Błaszkowski, Teun Boekhout, Nattawut Boonyuen, Michael Brysch-Herzberg, Bin Cao, Jonathan Cazabonne, Xue-Mei Chen, Claudia Coleine, Dong-Qin Dai, Heide-Marie Daniel, Suzana B. G. da Silva, Francisco Adriano de Souza, Somayeh Dolatabadi, Manish K. Dubey, Arun K. Dutta, Aseni Ediriweera, Eleonora Egidi, Mostafa S. Elshahed, Xinlei Fan, Juliana R. B. Felix, Mahesh C. A. Galappaththi, Marizeth Groenewald, Li-Su Han, Bo Huang, Vedprakash G. Hurdeal, Anastasia N. Ignatieva, Gustavo H. Jerônimo, Ana L. de Jesus, Serhii ..
Fungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
{"title":"Classes and phyla of the kingdom Fungi","authors":"Nalin N. Wijayawardene, Kevin D. Hyde, Kirill V. Mikhailov, Gábor Péter, André Aptroot, Carmen L. A. Pires-Zottarelli, Bruno T. Goto, Yuri S. Tokarev, Danny Haelewaters, Samantha C. Karunarathna, Paul M. Kirk, André L. C. M. de A. Santiago, Ramesh K. Saxena, Nathan Schoutteten, Madhara K. Wimalasena, Vladimir V. Aleoshin, Abdullah M. S. Al-Hatmi, Kahandawa G. S. U. Ariyawansa, Amanda R. Assunção, Thushara C. Bamunuarachchige, Hans-Otto Baral, D. Jayarama Bhat, Janusz Błaszkowski, Teun Boekhout, Nattawut Boonyuen, Michael Brysch-Herzberg, Bin Cao, Jonathan Cazabonne, Xue-Mei Chen, Claudia Coleine, Dong-Qin Dai, Heide-Marie Daniel, Suzana B. G. da Silva, Francisco Adriano de Souza, Somayeh Dolatabadi, Manish K. Dubey, Arun K. Dutta, Aseni Ediriweera, Eleonora Egidi, Mostafa S. Elshahed, Xinlei Fan, Juliana R. B. Felix, Mahesh C. A. Galappaththi, Marizeth Groenewald, Li-Su Han, Bo Huang, Vedprakash G. Hurdeal, Anastasia N. Ignatieva, Gustavo H. Jerônimo, Ana L. de Jesus, Serhii ..","doi":"10.1007/s13225-024-00540-z","DOIUrl":"https://doi.org/10.1007/s13225-024-00540-z","url":null,"abstract":"<p>Fungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom <i>Fungi</i>, drawing upon a comprehensive phylogenomic analysis of <i>Holomycota</i>, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of <i>Fungi,</i> viz<i>. Aphelidiomycota</i>, <i>Ascomycota</i>, <i>Basidiobolomycota</i>, <i>Basidiomycota</i>, <i>Blastocladiomycota</i>, <i>Calcarisporiellomycota</i>, <i>Chytridiomycota</i>, <i>Entomophthoromycota</i>, <i>Entorrhizomycota</i>, <i>Glomeromycota</i>, <i>Kickxellomycota</i>, <i>Monoblepharomycota</i>, <i>Mortierellomycota</i>, <i>Mucoromycota</i>, <i>Neocallimastigomycota</i>, <i>Olpidiomycota</i>, <i>Rozellomycota</i>, <i>Sanchytriomycota,</i> and <i>Zoopagomycota</i>. In the phylogenies, <i>Caulochytriomycota</i> resides in <i>Chytridiomycota</i>; thus, the former is regarded as a synonym of the latter, while <i>Caulochytriomycetes</i> is viewed as a class in <i>Chytridiomycota</i>. We provide a description of each phylum followed by its classes. A new subphylum, <i>Sanchytriomycotina</i> Karpov is introduced as the only subphylum in <i>Sanchytriomycota</i>. The subclass <i>Pneumocystomycetidae</i> Kirk et al. in <i>Pneumocystomycetes</i>, <i>Ascomycota</i> is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"44 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1007/s13225-024-00534-x
Jadson J. S. Oliveira, Dennis E. Desjardin, Thomas S. Jenkinson, Simona Margaritescu, Marina Capelari, Jean-Marc Moncalvo
Many taxonomic and systematic rearrangements were proposed to Marasmius Fr. since its original concept in 1835, and since 1980 when it became the type of Marasmiaceae. These were based on morphological and/or more recently molecular phylogenetic studies. This study conducted a comprehensive taxonomic and systematic evaluation of Marasmius that benefits the whole family, implementing multilocus (SSU, LSU, ITS, rpb2 and ef1-α) phylogenetic analyses integrated with morphological and other features. The resulting trees support (1) a Marasmiaceae clade-based circumscription within Marasmiineae, (2) a Marasmius clade-based circumscription within Marasmiaceae, and (3) a subgenus-section-subsection-series system. Two subgenera are proposed: Globulares and Marasmius. Marasmius auton. subgen. includes Crinis-eques sect. nov., sect. Marasmius, Sanguirotales sect. nov., Variabilispori sect. nov., and Sicciformes sect. nov., while Globulares subg. nov. groups sect. Globulares and sect. Sicci. Four subsections are proposed in sect. Globulares and three in sect. Marasmius and sect. Sicciformes. Seventeen series were defined in sect. Globulares and three in sect. Sicci. Selected traits were assessed for their phylogenetic signals within Marasmius, providing a robust framework for a natural system. Based on this analysis, Marasmiaceae includes Chaetocalathus, Crinipellis, Marasmius and Moniliophthora/Paramarasmius, and Campanellaceae fam. nov. includes Brunneocorticium, Campanella/Tetrapyrgos, Neocampanella, and Marasmiellus sect. Candidi. New species, names, combinations and epitypes are also proposed.
{"title":"Taxonomic revision of Marasmius Fr. and Marasmiaceae Roze ex Kühner based on multigene phylogenetics and morphological evidence","authors":"Jadson J. S. Oliveira, Dennis E. Desjardin, Thomas S. Jenkinson, Simona Margaritescu, Marina Capelari, Jean-Marc Moncalvo","doi":"10.1007/s13225-024-00534-x","DOIUrl":"https://doi.org/10.1007/s13225-024-00534-x","url":null,"abstract":"<p>Many taxonomic and systematic rearrangements were proposed to <i>Marasmius</i> Fr. since its original concept in 1835, and since 1980 when it became the type of Marasmiaceae. These were based on morphological and/or more recently molecular phylogenetic studies. This study conducted a comprehensive taxonomic and systematic evaluation of <i>Marasmius</i> that benefits the whole family, implementing multilocus (SSU, LSU, ITS, <i>rpb2</i> and <i>ef1-α</i>) phylogenetic analyses integrated with morphological and other features. The resulting trees support (1) a Marasmiaceae clade-based circumscription within Marasmiineae, (2) a <i>Marasmius</i> clade-based circumscription within Marasmiaceae, and (3) a subgenus-section-subsection-series system. Two subgenera are proposed: <i>Globulares</i> and <i>Marasmius</i>. <i>Marasmius</i> auton. subgen. includes <i>Crinis-eques</i> sect. nov., sect. <i>Marasmius</i>, <i>Sanguirotales</i> sect. nov., <i>Variabilispori</i> sect. nov., and <i>Sicciformes</i> sect. nov., while <i>Globulares</i> subg. nov. groups sect. <i>Globulares</i> and sect. <i>Sicci</i>. Four subsections are proposed in sect. <i>Globulares</i> and three in sect. <i>Marasmius</i> and sect. <i>Sicciformes</i>. Seventeen series were defined in sect. <i>Globulares</i> and three in sect. <i>Sicci</i>. Selected traits were assessed for their phylogenetic signals within <i>Marasmius</i>, providing a robust framework for a natural system. Based on this analysis, Marasmiaceae includes <i>Chaetocalathus</i>, <i>Crinipellis</i>, <i>Marasmius</i> and <i>Moniliophthora/Paramarasmius</i>, and Campanellaceae fam. nov. includes <i>Brunneocorticium</i>, <i>Campanella/Tetrapyrgos</i>, <i>Neocampanella</i>, and <i>Marasmiellus</i> sect. <i>Candidi</i>. New species, names, combinations and epitypes are also proposed.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"85 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.1007/s13225-024-00536-9
Sheng-Nan Zhang, Kevin D. Hyde, E. B. Gareth Jones, Xian-Dong Yu, Ratchadawan Cheewangkoon, Jian-Kui Liu
<p>Palms (Arecaceae) are emblems of tropical forests and host a vast array of fungi. The fungi associated with palms have been studied for over two centuries. However, taxonomic identification of some taxa, especially of the prominent genera <i>Anthostomella</i>, <i>Linocarpon</i> and <i>Oxydothis</i>, when based solely on macro- and micro-morphological characteristics is confused and needs better taxonomic resolution. The present study contributes to palm fungal taxonomy by incorporating molecular approaches for fungal identification based on new collections from China and Thailand. In total, 538 samples with 248 successfully obtained fungal isolates were derived from about 23 palm genera. Preliminary analyses showed that these taxa could be recognized as 170 species belonging to 115 genera, 66 families, and three genera <i>incertae sedis</i>. The fungi were mainly distributed in Dothideomycetes (<i>c.</i> 57.6%) and Sordariomycetes (<i>c.</i> 40.6%), with a few Lecanoromycetes (0.6%), Leotiomycetes (0.6%), and Orbiliomycetes (0.6%). In the present study on palm hosts in different ecosystems, it becomes obvious that the biodiversity and specificity of palm fungi is a reflection of habitats more than the hosts or geographical distributions. Based on morpho-phylogenetic evidence, 109 interesting taxa have been illustrated and described, including one new family Pseudocapsulosporaceae, seven new genera and 48 new species. The new genera are <i>Javarisimilis</i> and <i>Thecatisporium</i> (Astrosphaeriellaceae), <i>Neomorosphaeria</i> (Morosphaeriaceae), <i>Pseudocapsulospora</i> (Pseudocapsulosporaceae), <i>Pseudoeutypa</i> (Diatrypaceae), <i>Pseudothailandiomyces</i> (Tirisporellaceae), and <i>Subanthostomella</i> (Xylariales <i>incertae sedis</i>). New species are <i>Anthostomella arecacearum</i>, <i>A. foliatella</i>, <i>A. mangrovei</i>, <i>A. pseudobirima</i>, <i>Brunneiapiospora phoenicis</i>, <i>Diaporthe trachycarpi</i>, <i>Dictyosporium licualae</i>, <i>Ernakulamia palmae</i>, <i>Exosporium licualae</i>, <i>Fasciatispora asexualis</i>, <i>Javarisimilis palmarum</i>, <i>Koorchaloma arecae</i>, <i>Lophodermium nypae</i>, <i>Morenoina rattanica</i>, <i>Nemania palmarum</i>, <i>Neobambusicola palmae</i>, <i>Neodeightonia nypae</i>, <i>Neoeriomycopsis sabal</i>, <i>Neoleptosporella palmae</i>, <i>Neomassaria livistonae</i>, <i>N. palmae</i>, <i>Neomorosphaeria mangrovei</i>, <i>Neosetophoma trachycarpi</i>, <i>Niesslia trachycarpi</i>, <i>Orbilia licualae</i>, <i>Oxydothis caryotae</i>, <i>Ox. foliata</i>, <i>Ox. palmae</i>, <i>Ox. pyriforme, Ox. sinensis</i>, <i>Parateichospora palmarum</i>, <i>Periconia arecacearum</i>, <i>Phaeosphaeria palmae</i>, <i>Phyllosticta arecacearum</i>, <i>P. foliacea</i>, <i>Protocreopsis palmarum</i>, <i>Pseudocapsulospora phoenicis</i>, <i>Ps. rhapidis</i>, <i>Pseudomicrothyrium palmae</i>, <i>Pseudothailandiomyces nypae</i>, <i>Serenomyces phoeniceus</i>, <i>Stanjehughesia elaeidis</i>, <i>Subanthostomella palma
{"title":"Current insights into palm fungi with emphasis on taxonomy and phylogeny","authors":"Sheng-Nan Zhang, Kevin D. Hyde, E. B. Gareth Jones, Xian-Dong Yu, Ratchadawan Cheewangkoon, Jian-Kui Liu","doi":"10.1007/s13225-024-00536-9","DOIUrl":"https://doi.org/10.1007/s13225-024-00536-9","url":null,"abstract":"<p>Palms (Arecaceae) are emblems of tropical forests and host a vast array of fungi. The fungi associated with palms have been studied for over two centuries. However, taxonomic identification of some taxa, especially of the prominent genera <i>Anthostomella</i>, <i>Linocarpon</i> and <i>Oxydothis</i>, when based solely on macro- and micro-morphological characteristics is confused and needs better taxonomic resolution. The present study contributes to palm fungal taxonomy by incorporating molecular approaches for fungal identification based on new collections from China and Thailand. In total, 538 samples with 248 successfully obtained fungal isolates were derived from about 23 palm genera. Preliminary analyses showed that these taxa could be recognized as 170 species belonging to 115 genera, 66 families, and three genera <i>incertae sedis</i>. The fungi were mainly distributed in Dothideomycetes (<i>c.</i> 57.6%) and Sordariomycetes (<i>c.</i> 40.6%), with a few Lecanoromycetes (0.6%), Leotiomycetes (0.6%), and Orbiliomycetes (0.6%). In the present study on palm hosts in different ecosystems, it becomes obvious that the biodiversity and specificity of palm fungi is a reflection of habitats more than the hosts or geographical distributions. Based on morpho-phylogenetic evidence, 109 interesting taxa have been illustrated and described, including one new family Pseudocapsulosporaceae, seven new genera and 48 new species. The new genera are <i>Javarisimilis</i> and <i>Thecatisporium</i> (Astrosphaeriellaceae), <i>Neomorosphaeria</i> (Morosphaeriaceae), <i>Pseudocapsulospora</i> (Pseudocapsulosporaceae), <i>Pseudoeutypa</i> (Diatrypaceae), <i>Pseudothailandiomyces</i> (Tirisporellaceae), and <i>Subanthostomella</i> (Xylariales <i>incertae sedis</i>). New species are <i>Anthostomella arecacearum</i>, <i>A. foliatella</i>, <i>A. mangrovei</i>, <i>A. pseudobirima</i>, <i>Brunneiapiospora phoenicis</i>, <i>Diaporthe trachycarpi</i>, <i>Dictyosporium licualae</i>, <i>Ernakulamia palmae</i>, <i>Exosporium licualae</i>, <i>Fasciatispora asexualis</i>, <i>Javarisimilis palmarum</i>, <i>Koorchaloma arecae</i>, <i>Lophodermium nypae</i>, <i>Morenoina rattanica</i>, <i>Nemania palmarum</i>, <i>Neobambusicola palmae</i>, <i>Neodeightonia nypae</i>, <i>Neoeriomycopsis sabal</i>, <i>Neoleptosporella palmae</i>, <i>Neomassaria livistonae</i>, <i>N. palmae</i>, <i>Neomorosphaeria mangrovei</i>, <i>Neosetophoma trachycarpi</i>, <i>Niesslia trachycarpi</i>, <i>Orbilia licualae</i>, <i>Oxydothis caryotae</i>, <i>Ox. foliata</i>, <i>Ox. palmae</i>, <i>Ox. pyriforme, Ox. sinensis</i>, <i>Parateichospora palmarum</i>, <i>Periconia arecacearum</i>, <i>Phaeosphaeria palmae</i>, <i>Phyllosticta arecacearum</i>, <i>P. foliacea</i>, <i>Protocreopsis palmarum</i>, <i>Pseudocapsulospora phoenicis</i>, <i>Ps. rhapidis</i>, <i>Pseudomicrothyrium palmae</i>, <i>Pseudothailandiomyces nypae</i>, <i>Serenomyces phoeniceus</i>, <i>Stanjehughesia elaeidis</i>, <i>Subanthostomella palma","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"12 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.1007/s13225-024-00538-7
Asha J. Dissanayake, Jin-Tao Zhu, Ya-Ya Chen, Sajeewa S. N. Maharachchikumbura, Kevin D. Hyde, Jian-Kui Liu
Diaporthe is an important plant pathogenic genus, which also occurs as endophytes and saprobes. Many Diaporthe species that are morphologically similar proved to be genetically distinct. The current understanding of Diaporthe taxonomy by applying morphological characters, host associations and multi-gene phylogeny are problematic leading to overestimation/underestimation of species numbers of this significant fungal pathogenic genus. Currently, there are no definite boundaries for the accepted species. Hence, the present study aims to re-structure the genus Diaporthe, based on single gene phylogenies (ITS, tef, tub, cal and his), multi-gene phylogeny justified by applying GCPSR (Genealogical Concordance Phylogenetic Species Recognition) methodology as well as the coalescence-based models (PTP—Poisson Tree Processes and mPTP—multi-rate Poisson Tree Processes). Considering all available type isolates of Diaporthe, the genus is divided into seven sections while boundaries for 13 species and 15 species-complexes are proposed. To support this re-assessment of the genus, 82 Diaporthe isolates obtained from woody hosts in Guizhou Province in China were investigated and revealed the presence of two novel species and 17 previously known species. Synonymies are specified for 31 species based on molecular data and morphological studies. Dividing Diaporthe into several specific sections based on phylogenetic analyses can avoid the construction of lengthy phylogenetic trees of the entire genus in future taxonomic studies. In other words, when one conducts research related to the genus, only species from the appropriate section need to be selected for phylogenetic analysis.
{"title":"A re-evaluation of Diaporthe: refining the boundaries of species and species complexes","authors":"Asha J. Dissanayake, Jin-Tao Zhu, Ya-Ya Chen, Sajeewa S. N. Maharachchikumbura, Kevin D. Hyde, Jian-Kui Liu","doi":"10.1007/s13225-024-00538-7","DOIUrl":"https://doi.org/10.1007/s13225-024-00538-7","url":null,"abstract":"<p><i>Diaporthe</i> is an important plant pathogenic genus, which also occurs as endophytes and saprobes. Many <i>Diaporthe</i> species that are morphologically similar proved to be genetically distinct. The current understanding of <i>Diaporthe</i> taxonomy by applying morphological characters, host associations and multi-gene phylogeny are problematic leading to overestimation/underestimation of species numbers of this significant fungal pathogenic genus. Currently, there are no definite boundaries for the accepted species. Hence, the present study aims to re-structure the genus <i>Diaporthe</i>, based on single gene phylogenies (ITS, <i>tef</i>, <i>tub</i>, <i>cal</i> and <i>his</i>), multi-gene phylogeny justified by applying GCPSR (Genealogical Concordance Phylogenetic Species Recognition) methodology as well as the coalescence-based models (PTP—Poisson Tree Processes and mPTP—multi-rate Poisson Tree Processes). Considering all available type isolates of <i>Diaporthe</i>, the genus is divided into seven sections while boundaries for 13 species and 15 species-complexes are proposed. To support this re-assessment of the genus, 82 <i>Diaporthe</i> isolates obtained from woody hosts in Guizhou Province in China were investigated and revealed the presence of two novel species and 17 previously known species. Synonymies are specified for 31 species based on molecular data and morphological studies. Dividing <i>Diaporthe</i> into several specific sections based on phylogenetic analyses can avoid the construction of lengthy phylogenetic trees of the entire genus in future taxonomic studies. In other words, when one conducts research related to the genus, only species from the appropriate section need to be selected for phylogenetic analysis.</p>","PeriodicalId":12471,"journal":{"name":"Fungal Diversity","volume":"9 1","pages":""},"PeriodicalIF":20.3,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141561350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}