Contrasting morphology and growth habits of Frutexites in Late Devonian reef complexes of the Canning Basin, northwestern Australia

IF 2.7 2区 地球科学 Q2 BIOLOGY Geobiology Pub Date : 2023-11-20 DOI:10.1111/gbi.12579
France Champenois, Annette D. George, Kenneth J. McNamara, Jeremy Shaw, Maria Cherdantseva
{"title":"Contrasting morphology and growth habits of Frutexites in Late Devonian reef complexes of the Canning Basin, northwestern Australia","authors":"France Champenois,&nbsp;Annette D. George,&nbsp;Kenneth J. McNamara,&nbsp;Jeremy Shaw,&nbsp;Maria Cherdantseva","doi":"10.1111/gbi.12579","DOIUrl":null,"url":null,"abstract":"<p><i>Frutexites</i>-like microstructures are described from the exhumed Late Devonian reef complexes of the northern Canning Basin, Western Australia. Several high-resolution imaging techniques, including X-ray microcomputerised tomography, scanning electron microscopy and X-ray fluorescence microscopy, were used to investigate morphology and composition in two samples. Three types of <i>Frutexites</i>-like microstructures (Types I–III) have been identified. Type I, found lining an early marine cement-filled cavity in fore-reef grainstone facies, consists of dendritic structures formed primarily of coccoid bacteria with filamentous bacteria embedded in sheets of amorphous extracellular polymeric substances (EPS). These ferromanganiferous dendrites have laminated to spheroidal textures. Types II and III are from a toe-of-slope hardground. Type II grew in a crypt between two corals, is also dendritic and composed of bacilliform and filamentous bacteria embedded in an amorphous EPS sheet. The opaqueness of these ferriferous dendrites precludes more detailed description of textures. Type III grew as branching columnar microstromatolites and is composed of entwined filaments of <i>Girvanella</i>, <i>Rothpletzella</i> and <i>Wetheredella</i> with Fe-enriched outer walls that generate <i>Frutexites</i>-like microstructures. Types I and II resemble <i>Frutexites</i> sensu stricto as defined by Maslov (<i>Stromatolites</i>, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960) and are the result of the consecutive growth and permineralisation of biofilms composed of mixed bacterial communities growing in cryptic habitats. Type III superficially resembles <i>Frutexites</i> sensu stricto based on macroscopic field observations, however, detailed microscopic analysis reveals that it is composed of Fe-enriched tubular walls surrounded by Mn-enriched calcite.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12579","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12579","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Frutexites-like microstructures are described from the exhumed Late Devonian reef complexes of the northern Canning Basin, Western Australia. Several high-resolution imaging techniques, including X-ray microcomputerised tomography, scanning electron microscopy and X-ray fluorescence microscopy, were used to investigate morphology and composition in two samples. Three types of Frutexites-like microstructures (Types I–III) have been identified. Type I, found lining an early marine cement-filled cavity in fore-reef grainstone facies, consists of dendritic structures formed primarily of coccoid bacteria with filamentous bacteria embedded in sheets of amorphous extracellular polymeric substances (EPS). These ferromanganiferous dendrites have laminated to spheroidal textures. Types II and III are from a toe-of-slope hardground. Type II grew in a crypt between two corals, is also dendritic and composed of bacilliform and filamentous bacteria embedded in an amorphous EPS sheet. The opaqueness of these ferriferous dendrites precludes more detailed description of textures. Type III grew as branching columnar microstromatolites and is composed of entwined filaments of Girvanella, Rothpletzella and Wetheredella with Fe-enriched outer walls that generate Frutexites-like microstructures. Types I and II resemble Frutexites sensu stricto as defined by Maslov (Stromatolites, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960) and are the result of the consecutive growth and permineralisation of biofilms composed of mixed bacterial communities growing in cryptic habitats. Type III superficially resembles Frutexites sensu stricto based on macroscopic field observations, however, detailed microscopic analysis reveals that it is composed of Fe-enriched tubular walls surrounded by Mn-enriched calcite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澳大利亚西北部坎宁盆地晚泥盆世礁复合体中果粒虫的形态和生长习性对比。
从西澳大利亚坎宁盆地北部出土的晚泥盆世礁群中描述了类似frutexites的微观结构。几种高分辨率成像技术,包括x射线微电脑断层扫描、扫描电子显微镜和x射线荧光显微镜,用于研究两个样品的形态和组成。已鉴定出三种类型的类frutexite微结构(I-III型)。I型在礁前颗粒岩相早期海相水泥充填的空腔中发现,由树突结构组成,主要由球状细菌形成,丝状细菌嵌入无定形细胞外聚合物(EPS)片中。这些含铁枝晶呈层状,呈球状结构。类型II和III来自坡脚硬地。II型生长在两种珊瑚之间的隐窝中,也是树突状的,由嵌入无定形EPS片中的杆菌状和丝状细菌组成。这些含铁枝晶的不透明性妨碍了对其结构进行更详细的描述。III型为分枝柱状微叠层石,由Girvanella, Rothpletzella和Wetheredella的缠绕细丝组成,具有富铁的外壁,产生类似frutexites的微观结构。I型和II型类似Maslov定义的Frutexites sensu stricto (Stromatolites, Trudy Instituta geologicheskikh nauk Akademiya nauk SSR, 1960),是由生长在隐秘栖息地的混合细菌群落组成的生物膜连续生长和过矿化的结果。III型从宏观上看类似于Frutexites sensu stricto,但详细的微观分析表明,它是由富铁的管状壁包围富锰方解石组成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
期刊最新文献
Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil The Impact of Early Diagenesis on Biosignature Preservation in Sulfate Evaporites: Insights From Messinian (Late Miocene) Gypsum Living in Their Heyday: Iron-Oxidizing Bacteria Bloomed in Shallow-Marine, Subtidal Environments at ca. 1.88 Ga The Effects of Plant–Microbe–Environment Interactions on Mineral Weathering Patterns in a Granular Basalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1