首页 > 最新文献

Geobiology最新文献

英文 中文
Experimental Mineralisation of a Filamentous Hydrogenotrophic Methanogen in Carbonate, Phosphate, and Silicate
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-03-14 DOI: 10.1111/gbi.70014
Sigrid Huld, Sean McMahon, Sebastian Willman, Anna Neubeck

Methanogenic archaea were likely among the earliest organisms to populate the Earth, perhaps contributing to the Archaean greenhouse effect; they are also widely discussed as analogues to any potential life on Mars. However, fossil evidence of archaea has been difficult to identify in the rock record, perhaps because their preservation potential is intrinsically low or because they are particularly small and difficult to identify. Here, we examined the preservation potential of a methanogen of the genus Methanobacterium, recently isolated from a low-temperature serpentinizing system, an environment somewhat analogous to habitats on the early Earth and Mars. Notably, this organism has a cell wall composed of peptidoglycan-like pseudomurein, which may imply a mineralisation potential similar to that of gram-positive bacteria. Methanobacterium cells were placed in carbonate, phosphate, and silicate solutions for up to 3 months in order to assess the relative tendency of these minerals to encrust and preserve cellular morphology. Cells readily acquired a thick, uniform coating of silica, enhancing their potential for long-term preservation while also increasing overall filament size, an effect that may aid the discovery of fossil archaea while hindering their interpretation. Phosphates precipitated from the medium in all experimental setups and even in parallel experiments set up with low-phosphate medium, suggesting a hitherto unknown biomineralisation capacity of methanogens. Carbonate precipitates did not form in close association with cells.

{"title":"Experimental Mineralisation of a Filamentous Hydrogenotrophic Methanogen in Carbonate, Phosphate, and Silicate","authors":"Sigrid Huld,&nbsp;Sean McMahon,&nbsp;Sebastian Willman,&nbsp;Anna Neubeck","doi":"10.1111/gbi.70014","DOIUrl":"https://doi.org/10.1111/gbi.70014","url":null,"abstract":"<p>Methanogenic archaea were likely among the earliest organisms to populate the Earth, perhaps contributing to the Archaean greenhouse effect; they are also widely discussed as analogues to any potential life on Mars. However, fossil evidence of archaea has been difficult to identify in the rock record, perhaps because their preservation potential is intrinsically low or because they are particularly small and difficult to identify. Here, we examined the preservation potential of a methanogen of the genus <i>Methanobacterium</i>, recently isolated from a low-temperature serpentinizing system, an environment somewhat analogous to habitats on the early Earth and Mars. Notably, this organism has a cell wall composed of peptidoglycan-like pseudomurein, which may imply a mineralisation potential similar to that of gram-positive bacteria. <i>Methanobacterium</i> cells were placed in carbonate, phosphate, and silicate solutions for up to 3 months in order to assess the relative tendency of these minerals to encrust and preserve cellular morphology. Cells readily acquired a thick, uniform coating of silica, enhancing their potential for long-term preservation while also increasing overall filament size, an effect that may aid the discovery of fossil archaea while hindering their interpretation. Phosphates precipitated from the medium in all experimental setups and even in parallel experiments set up with low-phosphate medium, suggesting a hitherto unknown biomineralisation capacity of methanogens. Carbonate precipitates did not form in close association with cells.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143629878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Anaerobic Microbial Community Mediates Epigenetic Native Sulfur and Carbonate Formation During Replacement of Messinian Gypsum at Monte Palco, Sicily
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-03-06 DOI: 10.1111/gbi.70015
Simon E. Rouwendaal, Daniel Birgel, Marcello Natalicchio, Francesco Dela Pierre, Laetitia Guibourdenche, Thorsten Bauersachs, Giovanni Aloisi, Amanda L. Labrado, Benjamin Brunner, Jörn Peckmann

The microbially mediated replacement of sulfate-bearing evaporites by authigenic carbonate and native sulfur under anoxic conditions is poorly understood. Sulfur-bearing carbonates from the Monte Palco ridge (Sicily) replacing Messinian gypsum were therefore studied to better characterize the involved microorganisms. The lack of (1) sedimentary bedding, (2) lamination, and (3) significant water-column-derived lipid biomarkers in the secondary carbonates implies replacement after gypsum deposition (epigenesis). Allochthonous clasts from the older Calcare di Base and the younger Trubi Formation within these carbonates further evidence epigenetic formation. The sulfur-bearing carbonates are significantly 13C-depleted (δ13C as low as −51‰), identifying methane as a major carbon source. The 18O-enrichment of the carbonates (δ18O as high as 5.4‰) probably reflects precipitation from 18O-enriched fluids transported along adjacent faults or precipitation in a closed system with very little water. Native sulfur with variable 34S-enrichment (δ34S as high as 18.9‰), a relatively small maximum offset (12.3‰) between the sulfate source (gypsum) and native sulfur, and high δ34S values of carbonate-associated sulfate (as high as 61.1‰) suggest a high conversion to native sulfur in a (semi-)closed system, with insignificant sulfate removal. Anaerobic methanotrophic archaea (ANME) apparently affiliated with the ANME-1 clade mediated secondary mineral formation as evidenced by the biomarker inventory, which contains abundant 13C-depleted isoprenoids including sn3-hydroxyarchaeol as the sole hydroxyarchaeol isomer and glycerol dibiphytanyl glycerol tetraethers (GDGTs). A series of various, tentatively identified 13C-depleted non-isoprenoidal dialkyl glycerol diethers (DAGEs), 10me-C16 fatty acid, hydroxy C16 fatty acids, and cyclopropyl-C17:0ω7,8 fatty acid agree with sulfate-reducing bacteria participating in the anaerobic oxidation of methane. Specific conditions during gypsum replacement, unlike those at marine methane seeps, are reflected by the occurrence of 13C-depleted lipids such as lycopane, 9me-C17 fatty acid, and novel DAGEs. As a response to a confined environment probably characterized by high sulfate concentrations, sulfidic conditions, and elevated salinity, ANMEs and sulfate-reducing bacteria apparently adapted their membrane compositions to cope with such stressors.

{"title":"An Anaerobic Microbial Community Mediates Epigenetic Native Sulfur and Carbonate Formation During Replacement of Messinian Gypsum at Monte Palco, Sicily","authors":"Simon E. Rouwendaal,&nbsp;Daniel Birgel,&nbsp;Marcello Natalicchio,&nbsp;Francesco Dela Pierre,&nbsp;Laetitia Guibourdenche,&nbsp;Thorsten Bauersachs,&nbsp;Giovanni Aloisi,&nbsp;Amanda L. Labrado,&nbsp;Benjamin Brunner,&nbsp;Jörn Peckmann","doi":"10.1111/gbi.70015","DOIUrl":"https://doi.org/10.1111/gbi.70015","url":null,"abstract":"<p>The microbially mediated replacement of sulfate-bearing evaporites by authigenic carbonate and native sulfur under anoxic conditions is poorly understood. Sulfur-bearing carbonates from the Monte Palco ridge (Sicily) replacing Messinian gypsum were therefore studied to better characterize the involved microorganisms. The lack of (1) sedimentary bedding, (2) lamination, and (3) significant water-column-derived lipid biomarkers in the secondary carbonates implies replacement after gypsum deposition (epigenesis). Allochthonous clasts from the older Calcare di Base and the younger Trubi Formation within these carbonates further evidence epigenetic formation. The sulfur-bearing carbonates are significantly <sup>13</sup>C-depleted (δ<sup>13</sup>C as low as −51‰), identifying methane as a major carbon source. The <sup>18</sup>O-enrichment of the carbonates (δ<sup>18</sup>O as high as 5.4‰) probably reflects precipitation from <sup>18</sup>O-enriched fluids transported along adjacent faults or precipitation in a closed system with very little water. Native sulfur with variable <sup>34</sup>S-enrichment (δ<sup>34</sup>S as high as 18.9‰), a relatively small maximum offset (12.3‰) between the sulfate source (gypsum) and native sulfur, and high δ<sup>34</sup>S values of carbonate-associated sulfate (as high as 61.1‰) suggest a high conversion to native sulfur in a (semi-)closed system, with insignificant sulfate removal. Anaerobic methanotrophic archaea (ANME) apparently affiliated with the ANME-1 clade mediated secondary mineral formation as evidenced by the biomarker inventory, which contains abundant <sup>13</sup>C-depleted isoprenoids including <i>sn3</i>-hydroxyarchaeol as the sole hydroxyarchaeol isomer and glycerol dibiphytanyl glycerol tetraethers (GDGTs). A series of various, tentatively identified <sup>13</sup>C-depleted non-isoprenoidal dialkyl glycerol diethers (DAGEs), 10me-C<sub>16</sub> fatty acid, hydroxy C<sub>16</sub> fatty acids, and cyclopropyl-C<sub>17:0ω7,8</sub> fatty acid agree with sulfate-reducing bacteria participating in the anaerobic oxidation of methane. Specific conditions during gypsum replacement, unlike those at marine methane seeps, are reflected by the occurrence of <sup>13</sup>C-depleted lipids such as lycopane, 9me-C<sub>17</sub> fatty acid, and novel DAGEs. As a response to a confined environment probably characterized by high sulfate concentrations, sulfidic conditions, and elevated salinity, ANMEs and sulfate-reducing bacteria apparently adapted their membrane compositions to cope with such stressors.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143555086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Cycling of Sulfur and Other Redox-Sensitive Elements in Porewaters of San Clemente Basin, California, and Cocos Ridge, Costa Rica
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-02-19 DOI: 10.1111/gbi.70013
Daniela Osorio-Rodriguez, Frank J. Pavia, Daniel R. Utter, Matthew Quinan, Kameko Landry, Maya Gomes, Nathan D. Dalleska, Victoria J. Orphan, William M. Berelson, Jess F. Adkins

The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.

{"title":"Microbial Cycling of Sulfur and Other Redox-Sensitive Elements in Porewaters of San Clemente Basin, California, and Cocos Ridge, Costa Rica","authors":"Daniela Osorio-Rodriguez,&nbsp;Frank J. Pavia,&nbsp;Daniel R. Utter,&nbsp;Matthew Quinan,&nbsp;Kameko Landry,&nbsp;Maya Gomes,&nbsp;Nathan D. Dalleska,&nbsp;Victoria J. Orphan,&nbsp;William M. Berelson,&nbsp;Jess F. Adkins","doi":"10.1111/gbi.70013","DOIUrl":"https://doi.org/10.1111/gbi.70013","url":null,"abstract":"<div>\u0000 \u0000 <p>The microbial recycling of organic matter in marine sediments depends upon electron acceptors that are utilized based on availability and energetic yield. Since sulfate is the most abundant oxidant once oxygen has been depleted, the sulfide produced after sulfate reduction becomes an important electron donor for autotrophic microbes. The ability of sulfide to be re-oxidized through multiple metabolic pathways and intermediates with variable oxidation states prompts investigation into which species are preferentially utilized and what are the factors that determine the fate of reduced sulfur species. Quantifying these sulfur intermediates in porewaters is a critical first step towards achieving a more complete understanding of the oxidative sulfur cycle, yet this has been accomplished in very few studies, none of which include oligotrophic sedimentary environments in the open ocean. Here we present profiles of porewater sulfur intermediates from sediments underlying oligotrophic regions of the ocean, which encompass about 75% of the ocean's surface and are characterized by low nutrient levels and productivity. Aiming at addressing uncertainties about if and how sulfide produced by the degradation of scarce sedimentary organic matter plays a role in carbon fixation in the sediment, we determine depth profiles of redox-sensitive metals and sulfate isotope compositions and integrate these datasets with 16S rRNA microbial community composition data and solid-phase sulfur concentrations. We did not find significant correlations between sulfur species or trace metals and specific sulfur cycling taxa, which suggests that microorganisms in pelagic and oxic sediments may be generalists utilizing flexible metabolisms to oxidize organic matter through different electron acceptors.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Untangling the Primary Biotic and Abiotic Controls on Oxygen, Inorganic and Organic Carbon Isotope Signals in Modern Microbialites
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-02-14 DOI: 10.1111/gbi.70012
Robin Havas, Christophe Thomazo, Jeanne Caumartin, Miguel Iniesto, Hugo Bert, Didier Jézéquel, David Moreira, Rosaluz Tavera, Vladimir Bettencourt, Purificación López-García, Emmanuelle Vennin, Karim Benzerara

Microbialites are organo-sedimentary structures formed throughout most of the Earth history, over a wide range of geological contexts, and under a multitude of environmental conditions affecting their composition. The carbon and oxygen isotope records of carbonates, which are most often their main constituents, have been used as a widespread tool for paleoenvironmental reconstructions. However, the multiplicity of factors that influence microbialites formation is not always properly distinguished in their isotopic record, in both ancient and modern settings. It is therefore crucial to refine our understanding of the processes controlling microbialites isotopic signal. Here, we analyzed the carbon and oxygen isotope compositions from bulk and micro-drilled carbonates as well as bulk organic carbon isotope compositions in microbialites from four Mexican volcanic crater lakes of increasing alkalinity. The survey of four lakes allows comparing microbialite formation processes and their geochemical record within distinct physico-chemical contexts. The geochemical analyses were performed in parallel to petrographic and mineralogical characterization and interpreted in light of the known microbial community composition for microbialites of the same lakes. Combining these data, we show that the potential for isotopic biosignature preservation primarily depends on physico-chemical conditions. Carbon isotope biosignatures pointing out to an autotrophic influence on carbonate precipitation are preserved in the lowest alkalinity lakes. By contrast, higher alkalinity lakes, where microbialites are more massive, favor carbonate precipitation in isotopic equilibrium with the lake water, with secondary influence of heterotrophic organic carbon degradation. From these results, we suggest that microbialite carbonate C isotope records can be interpreted as the balance between the microbialite net primary productivity and the amount of precipitation that relates to physico-chemical forcing. The signals of microbialite oxygen isotope compositions highlight a lack of understanding in the oxygen isotope records of relatively rare carbonate phases such as hydromagnesite. Nonetheless, we show that these signals are primarily influenced by the basins' hydrology, though biological effects may also play a (minor) role. Overall, both carbon and oxygen isotopic signals may record a mixture of different local/global and biotic/abiotic phenomena, making microbialites intricate archives of their growth environment, which should thus be interpreted with cautions and in the light of their surrounding sediments.

{"title":"Untangling the Primary Biotic and Abiotic Controls on Oxygen, Inorganic and Organic Carbon Isotope Signals in Modern Microbialites","authors":"Robin Havas,&nbsp;Christophe Thomazo,&nbsp;Jeanne Caumartin,&nbsp;Miguel Iniesto,&nbsp;Hugo Bert,&nbsp;Didier Jézéquel,&nbsp;David Moreira,&nbsp;Rosaluz Tavera,&nbsp;Vladimir Bettencourt,&nbsp;Purificación López-García,&nbsp;Emmanuelle Vennin,&nbsp;Karim Benzerara","doi":"10.1111/gbi.70012","DOIUrl":"https://doi.org/10.1111/gbi.70012","url":null,"abstract":"<p>Microbialites are organo-sedimentary structures formed throughout most of the Earth history, over a wide range of geological contexts, and under a multitude of environmental conditions affecting their composition. The carbon and oxygen isotope records of carbonates, which are most often their main constituents, have been used as a widespread tool for paleoenvironmental reconstructions. However, the multiplicity of factors that influence microbialites formation is not always properly distinguished in their isotopic record, in both ancient and modern settings. It is therefore crucial to refine our understanding of the processes controlling microbialites isotopic signal. Here, we analyzed the carbon and oxygen isotope compositions from bulk and micro-drilled carbonates as well as bulk organic carbon isotope compositions in microbialites from four Mexican volcanic crater lakes of increasing alkalinity. The survey of four lakes allows comparing microbialite formation processes and their geochemical record within distinct physico-chemical contexts. The geochemical analyses were performed in parallel to petrographic and mineralogical characterization and interpreted in light of the known microbial community composition for microbialites of the same lakes. Combining these data, we show that the potential for isotopic biosignature preservation primarily depends on physico-chemical conditions. Carbon isotope biosignatures pointing out to an autotrophic influence on carbonate precipitation are preserved in the lowest alkalinity lakes. By contrast, higher alkalinity lakes, where microbialites are more massive, favor carbonate precipitation in isotopic equilibrium with the lake water, with secondary influence of heterotrophic organic carbon degradation. From these results, we suggest that microbialite carbonate C isotope records can be interpreted as the balance between the microbialite net primary productivity and the amount of precipitation that relates to physico-chemical forcing. The signals of microbialite oxygen isotope compositions highlight a lack of understanding in the oxygen isotope records of relatively rare carbonate phases such as hydromagnesite. Nonetheless, we show that these signals are primarily influenced by the basins' hydrology, though biological effects may also play a (minor) role. Overall, both carbon and oxygen isotopic signals may record a mixture of different local/global and biotic/abiotic phenomena, making microbialites intricate archives of their growth environment, which should thus be interpreted with cautions and in the light of their surrounding sediments.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to Make a Rock in 150 Days: Observations of Biofilms Promoting Rapid Beachrock Formation
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-02-06 DOI: 10.1111/gbi.70009
Brianna M. Hibner, Marjorie D. Cantine, Elizabeth J. Trower, Jacqueline E. Dodd, Maya L. Gomes

Beachrock is a type of carbonate-cemented rock that forms via rapid cementation in the intertidal zone. Beachrock is a valuable geological tool as an indicator of paleoshorelines and may protect shorelines from erosion. Previous studies present a range of hypotheses about the processes enabling rapid beachrock formation, which span purely physicochemical mechanisms to a significant role for microbially mediated carbonate precipitation. We designed a set of in situ field experiments to explore the rates and mechanisms of beachrock formation on Little Ambergris Cay (Turks and Caicos Islands). Our field site has evidence for rapid beachrock cementation, including the incorporation of 20th century anthropogenic detritus into beachrock. We deployed pouches of sterilized ooid sand in the upper intertidal zone and assessed the extent of cementation and biofilm development after durations of 4 days, 2.5 months, and 5 months. We observed incipient meniscus cements after only 4 days of incubation in the field, suggesting that physicochemical processes are important in driving initial cementation. After 2.5 months, we observed substantial biofilm colonization on our experimental substrates, with interwoven networks of Halomicronema filaments binding clusters of ooids to the nylon pouches. After 5 months, we observed incipient beachrock formation in the form of coherent aggregates of ooids up to 1 cm in diameter, bound together by both networks of microbial filaments and incipient cements. We interpret that the cyanobacteria-dominated beachrock biofilm community on Little Ambergris Cay plays an important role in beachrock formation through the physical stabilization of sediment as cementation proceeds. Together, this combination of physicochemical and microbial mechanisms enables fresh rock to form in as little as 150 days.

{"title":"How to Make a Rock in 150 Days: Observations of Biofilms Promoting Rapid Beachrock Formation","authors":"Brianna M. Hibner,&nbsp;Marjorie D. Cantine,&nbsp;Elizabeth J. Trower,&nbsp;Jacqueline E. Dodd,&nbsp;Maya L. Gomes","doi":"10.1111/gbi.70009","DOIUrl":"https://doi.org/10.1111/gbi.70009","url":null,"abstract":"<div>\u0000 \u0000 <p>Beachrock is a type of carbonate-cemented rock that forms via rapid cementation in the intertidal zone. Beachrock is a valuable geological tool as an indicator of paleoshorelines and may protect shorelines from erosion. Previous studies present a range of hypotheses about the processes enabling rapid beachrock formation, which span purely physicochemical mechanisms to a significant role for microbially mediated carbonate precipitation. We designed a set of in situ field experiments to explore the rates and mechanisms of beachrock formation on Little Ambergris Cay (Turks and Caicos Islands). Our field site has evidence for rapid beachrock cementation, including the incorporation of 20th century anthropogenic detritus into beachrock. We deployed pouches of sterilized ooid sand in the upper intertidal zone and assessed the extent of cementation and biofilm development after durations of 4 days, 2.5 months, and 5 months. We observed incipient meniscus cements after only 4 days of incubation in the field, suggesting that physicochemical processes are important in driving initial cementation. After 2.5 months, we observed substantial biofilm colonization on our experimental substrates, with interwoven networks of <i>Halomicronema</i> filaments binding clusters of ooids to the nylon pouches. After 5 months, we observed incipient beachrock formation in the form of coherent aggregates of ooids up to 1 cm in diameter, bound together by both networks of microbial filaments and incipient cements. We interpret that the cyanobacteria-dominated beachrock biofilm community on Little Ambergris Cay plays an important role in beachrock formation through the physical stabilization of sediment as cementation proceeds. Together, this combination of physicochemical and microbial mechanisms enables fresh rock to form in as little as 150 days.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth of Microbial Mats on Hard Nuclei in Shallow Sandy Environments
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-02-06 DOI: 10.1111/gbi.70011
Kendall Valentine, Tanja Bosak, Maria Kondrat'yev, Vanja Klepac-Ceraj, Ashley S. Kleinman, Rebecca Rubinstein, Giulio Mariotti

The growth of most stromatolites is a result of interactions among the growth of microbial mats, mineral precipitation, water flow, and sediment movement. Here, we ask how oxygenic photosynthetic microbes colonize surfaces and interact with sediments in high-energy environments that contain constantly moving sand. For this, we investigate cyanobacterial growth on centimeter-scale concrete spheres in a continuously agitated wave tank. Cyanobacteria are unable to colonize moving sand, but establish biofilms on spheres within 5–6 weeks. These biofilms trap up to 0.5 g/cm2 of sand on the top and 0.3 g/cm2 on the sides within 25 weeks. The colonization does not depend on the size of the spheres, but instead depends on their surface roughness. Cyanobacteria easily colonize spheres with a surface roughness that matches the bed grain size (0.3 mm), but cannot colonize the initial topographic highs with a roughness of ~0.001 mm. In both cases, recesses on the surfaces of the spheres protect cyanobacteria from sandblasting. Thus, microbial biofilms can become established even in high-energy environments, if topographic highs are large enough not to be rolled around by the flow and rough enough to provide attachment loci. If cementation occurs within biofilms, the interplay among biofilm growth, sediment trapping, and cementation can lead to the upward as well as lateral growth of stromatolites. These experimental observations can explain the preferential upward growth of stromatolites on topographic highs in areas with frequently mobilized sediment grains, including modern stromatolites in the intertidal zone in Shark Bay and the subtidal zone in The Bahamas.

{"title":"Growth of Microbial Mats on Hard Nuclei in Shallow Sandy Environments","authors":"Kendall Valentine,&nbsp;Tanja Bosak,&nbsp;Maria Kondrat'yev,&nbsp;Vanja Klepac-Ceraj,&nbsp;Ashley S. Kleinman,&nbsp;Rebecca Rubinstein,&nbsp;Giulio Mariotti","doi":"10.1111/gbi.70011","DOIUrl":"https://doi.org/10.1111/gbi.70011","url":null,"abstract":"<div>\u0000 \u0000 <p>The growth of most stromatolites is a result of interactions among the growth of microbial mats, mineral precipitation, water flow, and sediment movement. Here, we ask how oxygenic photosynthetic microbes colonize surfaces and interact with sediments in high-energy environments that contain constantly moving sand. For this, we investigate cyanobacterial growth on centimeter-scale concrete spheres in a continuously agitated wave tank. Cyanobacteria are unable to colonize moving sand, but establish biofilms on spheres within 5–6 weeks. These biofilms trap up to 0.5 g/cm<sup>2</sup> of sand on the top and 0.3 g/cm<sup>2</sup> on the sides within 25 weeks. The colonization does not depend on the size of the spheres, but instead depends on their surface roughness. Cyanobacteria easily colonize spheres with a surface roughness that matches the bed grain size (0.3 mm), but cannot colonize the initial topographic highs with a roughness of ~0.001 mm. In both cases, recesses on the surfaces of the spheres protect cyanobacteria from sandblasting. Thus, microbial biofilms can become established even in high-energy environments, if topographic highs are large enough not to be rolled around by the flow and rough enough to provide attachment loci. If cementation occurs within biofilms, the interplay among biofilm growth, sediment trapping, and cementation can lead to the upward as well as lateral growth of stromatolites. These experimental observations can explain the preferential upward growth of stromatolites on topographic highs in areas with frequently mobilized sediment grains, including modern stromatolites in the intertidal zone in Shark Bay and the subtidal zone in The Bahamas.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbially Enhanced Growth and Metal Capture by Ferromanganese Concretions in a Laboratory Experiment
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2025-02-02 DOI: 10.1111/gbi.70010
Renata Majamäki, Joonas Wasiljeff, Lotta Purkamo, Jenni Hultman, Eero Asmala, Pirjo Yli-Hemminki, Kirsten S. Jørgensen, Karoliina Koho, Jukka Kuva, Joonas J. Virtasalo

The growth and metal enrichment of ferromanganese minerals on the seafloor have intrigued many studies, yet the role of microbes in the process has remained elusive. Here, we assessed the microbial influence on the growth and trace metal accumulation and release of ferromanganese concretions from the Baltic Sea using 12-week microcosm incubation experiments. We studied three concretion morphotypes: Crust, discoidal, and spheroidal, with biotic and abiotic treatments. The concretion samples were collected into bottles containing artificial brackish seawater from the Gulf of Finland, incubated in in-situ simulating conditions, and sampled at the beginning and end of the experiment. Microscale X-ray-computed tomography confirmed the local growth of up to 10 μm thick patches on the concretion surface during the 12-week incubation period, corresponding to a growth rate of 0.04 mm/year. Scanning electron microscopy of glass slides in the microcosms revealed freshly precipitated cauliflower-like grains, typical of freshly formed Fe- and Mn-hydroxides. Decreased concentrations of dissolved trace metals (Mn, Fe Co, V, Ni, Zn, and Mo) in the incubation solutions indicated the accumulation of these elements into concretions in the biotic microcosms. In contrast, the dissolution of concretions was observed in abiotic microcosms, confirming that microbial activity enhanced the ferromanganese precipitation and the associated accumulation and release of P and trace metals into the ambient solution. The microbial contribution was confirmed by a strong decrease in headspace methane concentrations in biotic microcosms, further indicating the presence of active methanotrophs in the concretion communities.

{"title":"Microbially Enhanced Growth and Metal Capture by Ferromanganese Concretions in a Laboratory Experiment","authors":"Renata Majamäki,&nbsp;Joonas Wasiljeff,&nbsp;Lotta Purkamo,&nbsp;Jenni Hultman,&nbsp;Eero Asmala,&nbsp;Pirjo Yli-Hemminki,&nbsp;Kirsten S. Jørgensen,&nbsp;Karoliina Koho,&nbsp;Jukka Kuva,&nbsp;Joonas J. Virtasalo","doi":"10.1111/gbi.70010","DOIUrl":"10.1111/gbi.70010","url":null,"abstract":"<div>\u0000 \u0000 <p>The growth and metal enrichment of ferromanganese minerals on the seafloor have intrigued many studies, yet the role of microbes in the process has remained elusive. Here, we assessed the microbial influence on the growth and trace metal accumulation and release of ferromanganese concretions from the Baltic Sea using 12-week microcosm incubation experiments. We studied three concretion morphotypes: Crust, discoidal, and spheroidal, with biotic and abiotic treatments. The concretion samples were collected into bottles containing artificial brackish seawater from the Gulf of Finland, incubated in in-situ simulating conditions, and sampled at the beginning and end of the experiment. Microscale X-ray-computed tomography confirmed the local growth of up to 10 μm thick patches on the concretion surface during the 12-week incubation period, corresponding to a growth rate of 0.04 mm/year. Scanning electron microscopy of glass slides in the microcosms revealed freshly precipitated cauliflower-like grains, typical of freshly formed Fe- and Mn-hydroxides. Decreased concentrations of dissolved trace metals (Mn, Fe Co, V, Ni, Zn, and Mo) in the incubation solutions indicated the accumulation of these elements into concretions in the biotic microcosms. In contrast, the dissolution of concretions was observed in abiotic microcosms, confirming that microbial activity enhanced the ferromanganese precipitation and the associated accumulation and release of P and trace metals into the ambient solution. The microbial contribution was confirmed by a strong decrease in headspace methane concentrations in biotic microcosms, further indicating the presence of active methanotrophs in the concretion communities.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanobacteria Boring Limestones in Freshwater Settings—Their Pioneering Role in Sculpturing Pebbles and Carbonate Dissolution 蓝藻在淡水环境中钻探石灰石-它们在雕刻鹅卵石和碳酸盐溶解中的先驱作用。
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2024-12-25 DOI: 10.1111/gbi.70006
Andreas Wetzel, Jakob Zopfi, Alfred Uchman

In freshwater lakes and rivers, cyanobacteria belonging to the family Leptolyngbyaceae bore > 1 mm deep into limestone pebbles by dissolving carbonate at the tip of their 3–8 μm-thick filaments. The abundance of these borings decreases downward while it is so high at the rock surface that micrometric debris is formed. Moreover, the disintegrated material on the pebbles' surface can be easily removed, for instance, when pebbles are grinding against each other due to wave or current action or when insect larvae settle and scratch loosened grains from the surface while constructing their cases. After a larvae case has been abandoned, it decays with time and the surface benath it is colonized again by boring cyanobacteria. These processes can alternate repeatedly and lead to a sculptured appearance of the pebbles, especially because insect larvae tend to colonize already existing depressions where they are better protected from predation and where they can access suspended food more easily. In the sculptures entrenched by insect larvae, larvae of byssate bivalves like Dreissena polymorpha may settle. When growing, these bivalves also remove loosened carbonate from the bored surface. Thus, boring cyanobacteria play a pioneering, preconditioning role in the morphological evolution of limestone (pebble) surfaces by transforming an initially hard substrate into a firm- to softground that is subsequently colonized and structured by animals. Consequently, sculptured pebbles are the product of multiphase, preconditioned bioerosion. Ultimately, the synergistic effects of these bioerosive processes result in the dissolution of carbonate leading to a maximum take-up of approximately 0.5–0.8 kg CO2 per square meter and year, as a preliminary estimate indicates.

在淡水湖泊和河流中,蓝细菌通过溶解3 ~ 8 μm粗细丝顶端的碳酸盐,在石灰岩卵石中钻入bbb10 ~ 1mm深。这些钻孔的丰度向下减少,因为它在岩石表面很高,形成了微米级的碎片。此外,鹅卵石表面的破碎物质可以很容易地去除,例如,当鹅卵石由于波浪或电流的作用而相互摩擦时,或者当昆虫幼虫在筑巢时定居并刮掉表面松动的颗粒时。在幼虫被遗弃后,它会随着时间的推移而腐烂,它下面的表面又会被无聊的蓝藻占据。这些过程可以反复交替,并导致鹅卵石的雕塑外观,特别是因为昆虫幼虫倾向于定居已经存在的洼地,在那里它们可以更好地保护自己免受捕食,并且可以更容易地获得悬浮的食物。在被昆虫幼虫盘存的雕塑中,像多形双壳类的双壳类动物的幼虫可能会定居下来。在生长过程中,这些双壳类也会从钻孔表面去除松散的碳酸盐。因此,无聊的蓝藻在石灰石(卵石)表面的形态进化中发挥了开创性的预处理作用,通过将最初坚硬的基材转化为坚固的软基材,随后被动物定植和构造。因此,雕刻的鹅卵石是多相、预先调节的生物侵蚀的产物。最终,这些生物侵蚀过程的协同效应导致碳酸盐的溶解,导致每平方米和每年最大吸收约0.5-0.8千克二氧化碳,初步估计表明。
{"title":"Cyanobacteria Boring Limestones in Freshwater Settings—Their Pioneering Role in Sculpturing Pebbles and Carbonate Dissolution","authors":"Andreas Wetzel,&nbsp;Jakob Zopfi,&nbsp;Alfred Uchman","doi":"10.1111/gbi.70006","DOIUrl":"10.1111/gbi.70006","url":null,"abstract":"<div>\u0000 \u0000 <p>In freshwater lakes and rivers, cyanobacteria belonging to the family Leptolyngbyaceae bore &gt; 1 mm deep into limestone pebbles by dissolving carbonate at the tip of their 3–8 μm-thick filaments. The abundance of these borings decreases downward while it is so high at the rock surface that micrometric debris is formed. Moreover, the disintegrated material on the pebbles' surface can be easily removed, for instance, when pebbles are grinding against each other due to wave or current action or when insect larvae settle and scratch loosened grains from the surface while constructing their cases. After a larvae case has been abandoned, it decays with time and the surface benath it is colonized again by boring cyanobacteria. These processes can alternate repeatedly and lead to a sculptured appearance of the pebbles, especially because insect larvae tend to colonize already existing depressions where they are better protected from predation and where they can access suspended food more easily. In the sculptures entrenched by insect larvae, larvae of byssate bivalves like <i>Dreissena polymorpha</i> may settle. When growing, these bivalves also remove loosened carbonate from the bored surface. Thus, boring cyanobacteria play a pioneering, preconditioning role in the morphological evolution of limestone (pebble) surfaces by transforming an initially hard substrate into a firm- to softground that is subsequently colonized and structured by animals. Consequently, sculptured pebbles are the product of multiphase, preconditioned bioerosion. Ultimately, the synergistic effects of these bioerosive processes result in the dissolution of carbonate leading to a maximum take-up of approximately 0.5–0.8 kg CO<sub>2</sub> per square meter and year, as a preliminary estimate indicates.</p>\u0000 </div>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"23 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere 在模拟地球早期缺氧环境下,早期分支蓝藻生长更快,超氧化物歧化酶活性上调。
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2024-12-12 DOI: 10.1111/gbi.70005
Sadia S. Tamanna, Joanne S. Boden, Kimberly M. Kaiser, Nicola Wannicke, Jonas Höring, Patricia Sánchez-Baracaldo, Marcel Deponte, Nicole Frankenberg-Dinkel, Michelle M. Gehringer

The evolution of oxygenic photosynthesis during the Archean (4–2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O2, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, Pseudanabaena sp. PCC7367, previously demonstrated to release significantly more O2 under anoxic conditions. The observed significantly higher growth rates (p < 0.001) and protein and glycogen contents (p < 0.05) in anoxically cultured Pseudanabaena PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of Pseudanabaena sp. PCC7367 correlated to atmospheric pO2 and cellular SOD activity? Expression of sodB (encoding FeSOD) and sodC (encoding CuZnSOD) strongly correlated with medium O2 levels (p < 0.001). Expression of sodA (encoding MnSOD) correlated significantly to SOD activity during the day (p = 0.019) when medium O2 concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (p < 0.001) 2 h before the onset of the dark phase compared to O2-rich growth conditions. The expression of SOD encoding genes was significantly reduced (p < 0.05) under anoxic conditions in stirred cultures, as were medium O2 levels (p ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing pO2 negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.

太古宙(4-2.5 Ga)含氧光合作用的演化需要互补还原途径的存在来维持细胞氧化还原平衡。虽然细菌和古细菌中超氧化物歧化酶(sod)的进化时间尚未确定,但蓝藻中出现的第一批sod在反应中心(CuZnSOD)中含有铜和锌。在这里,我们分析了深分枝菌株Pseudanabaena sp. PCC7367的生长特性、SOD基因表达(qRT-PCR)和细胞酶活性,之前证明该菌株在缺氧条件下释放更多的O2。与目前富氧条件下培养的对照培养物相比,缺氧培养的假蓝藻PCC7367的生长速率(p < 0.001)和蛋白质和糖原含量(p < 0.05)显著提高,这引发了以下问题:假蓝藻PCC7367的生长是否与大气pO2和细胞SOD活性相关?sodB(编码FeSOD)和sodC(编码CuZnSOD)的表达与中氧水平密切相关(p < 0.001)。在培养基O2浓度最高时,sodA(编码MnSOD)的表达与SOD活性显著相关(p = 0.019)。缺氧培养的细胞SOD酶活性在黑暗期开始前2小时显著高于富氧培养(p < 0.001)。在搅拌培养中,与氧化培养相比,在缺氧条件下,SOD编码基因的表达显著降低(p < 0.05),中等O2水平也显著降低(p≤0.001),但细胞总SOD活性保持相当。我们的数据表明,pO2的增加可能通过增加光呼吸作用对早期蓝藻的生存能力产生负面影响。此外,在黑暗阶段,超氧化物失活基因的表达增加表明,与早期地球相比,现代条件下sod的替换率增加。
{"title":"Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere","authors":"Sadia S. Tamanna,&nbsp;Joanne S. Boden,&nbsp;Kimberly M. Kaiser,&nbsp;Nicola Wannicke,&nbsp;Jonas Höring,&nbsp;Patricia Sánchez-Baracaldo,&nbsp;Marcel Deponte,&nbsp;Nicole Frankenberg-Dinkel,&nbsp;Michelle M. Gehringer","doi":"10.1111/gbi.70005","DOIUrl":"10.1111/gbi.70005","url":null,"abstract":"<p>The evolution of oxygenic photosynthesis during the Archean (4–2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O<sub>2</sub>, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, <i>Pseudanabaena</i> sp. PCC7367, previously demonstrated to release significantly more O<sub>2</sub> under anoxic conditions. The observed significantly higher growth rates (<i>p</i> &lt; 0.001) and protein and glycogen contents (<i>p</i> &lt; 0.05) in anoxically cultured <i>Pseudanabaena</i> PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of <i>Pseudanabaena</i> sp. PCC7367 correlated to atmospheric <i>p</i>O<sub>2</sub> and cellular SOD activity? Expression of <i>sodB</i> (encoding FeSOD) and <i>sodC</i> (encoding CuZnSOD) strongly correlated with medium O<sub>2</sub> levels (<i>p</i> &lt; 0.001). Expression of <i>sodA</i> (encoding MnSOD) correlated significantly to SOD activity during the day (<i>p</i> = 0.019) when medium O<sub>2</sub> concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (<i>p</i> &lt; 0.001) 2 h before the onset of the dark phase compared to O<sub>2</sub>-rich growth conditions. The expression of SOD encoding genes was significantly reduced (<i>p</i> &lt; 0.05) under anoxic conditions in stirred cultures, as were medium O<sub>2</sub> levels (<i>p</i> ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing <i>p</i>O<sub>2</sub> negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil 铁形成的结晶途径:从2.7 Ga Carajás地层的磁性和高分辨率成像的见解。
IF 2.7 2区 地球科学 Q2 BIOLOGY Pub Date : 2024-12-12 DOI: 10.1111/gbi.70008
Livia Teixeira, Julie Carlut, Eric Siciliano Rego, Ricardo I.F. Trindade, Pascal Philippot

Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.7 Ga Carajás Formation, Brazil, to investigate their nature and potential for preserving ancient environmental conditions. Our findings reveal that magnetite, in the form of large 0.1–0.5 mm crystals, is the main iron oxide, with an overall averaged saturation magnetization (Ms) of 25 Am2/kg (corresponding to ~27 wt% of magnetite) over the studied 230 m of the sequence. Nevertheless, the non-negligible contribution of minerals with higher coercivity suggests variable proportions of hematite along the core. Additionally, we observe non-uniform behavior in magnetite grains, with distinct populations identified through low-temperature measurements of the Verwey transition. Petrographic observations indicate that the original sediment was an Fe–Si mud consisting of a ferrihydrite–silica mixture formed in the water column. This assemblage was rapidly transformed into nano-scale hematite embedded in silica as indicated by a honeycomb structure composed of Si-spherules distributed in a microscale hematite matrix. Textural relationships show that the nucleation of magnetite started during or soon after the formation of hematite, as indicated by the preservation of the Si-spherules within magnetite cores. Further magnetite overgrowth stages are characterized by inclusion-free rims, associated with continuous Si supply during the evolving diagenetic or early metamorphic stages. These findings, combined with existing literature, suggest that ferrihydrite precipitated alongside Si and organic material, later crystallizing as hematite on the seafloor. Anaerobic respiration by Fe(III)-reducing microorganisms likely contributed to early magnetite formation in a fluid-saturated, unconsolidated sediment. Subsequent low-grade metamorphism and Si mobilization led to palisade quartz precipitation and a second stage of magnetite growth likely formed at the expense of matrix hematite through thermochemical Fe(III) reduction. Low-temperature magnetic analyses revealed that the two generations of magnetite core and rim are associated with specific stoichiometry.

带状铁地层(BIFs)是一种化学沉积岩,通常用于研究前寒武纪海洋的化学和氧化还原状态。尽管它们具有重要意义,但关于铁氧化物在if中的结晶途径的许多方面仍然受到松散的约束。在这项研究中,我们将巴西2.7 Ga Carajás组精细层压的bif的磁性表征与高分辨率光学和电子成像相结合,以研究它们的性质和保存古代环境条件的潜力。我们的研究结果表明,以0.1-0.5 mm大晶体形式存在的磁铁矿是主要的氧化铁,在研究的230 m序列中,总体平均饱和磁化强度(Ms)为25 Am2/kg(相当于~ 27wt %的磁铁矿)。然而,具有较高矫顽力的矿物的不可忽略的贡献表明赤铁矿沿岩心的比例是可变的。此外,我们观察到磁铁矿颗粒的非均匀行为,通过Verwey转变的低温测量确定了不同的种群。岩石学观察表明,原始沉积物为铁硅泥,由水柱中形成的铁水合硅混合物组成。这种组合迅速转化为嵌入二氧化硅的纳米级赤铁矿,由分布在微尺度赤铁矿基质中的硅球组成的蜂窝状结构表明。结构关系表明,磁铁矿的成核开始于赤铁矿形成期间或形成后不久,这一点可以从磁铁矿岩心中保存的硅球粒中看出。进一步的磁铁矿过度生长阶段以无包裹体边缘为特征,在演化的成岩或早变质阶段与连续的Si供应有关。这些发现,结合现有文献,表明水合铁与硅和有机物质一起沉淀,后来在海底结晶为赤铁矿。铁(III)还原微生物的厌氧呼吸作用可能促成了流体饱和、松散沉积物中早期磁铁矿的形成。随后的低变质作用和硅活化作用导致栅栏石英沉淀,第二阶段的磁铁矿生长可能是通过热化学Fe(III)还原以基体赤铁矿为代价形成的。低温磁分析表明,两代磁铁矿岩心和岩缘与特定的化学计量有关。
{"title":"Crystallization Pathways of Iron Formations: Insights From Magnetic Properties and High-Resolution Imaging of the 2.7 Ga Carajás Formation, Brazil","authors":"Livia Teixeira,&nbsp;Julie Carlut,&nbsp;Eric Siciliano Rego,&nbsp;Ricardo I.F. Trindade,&nbsp;Pascal Philippot","doi":"10.1111/gbi.70008","DOIUrl":"10.1111/gbi.70008","url":null,"abstract":"<p>Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.7 Ga Carajás Formation, Brazil, to investigate their nature and potential for preserving ancient environmental conditions. Our findings reveal that magnetite, in the form of large 0.1–0.5 mm crystals, is the main iron oxide, with an overall averaged saturation magnetization (<i>M</i><sub>s</sub>) of 25 Am<sup>2</sup>/kg (corresponding to ~27 wt% of magnetite) over the studied 230 m of the sequence. Nevertheless, the non-negligible contribution of minerals with higher coercivity suggests variable proportions of hematite along the core. Additionally, we observe non-uniform behavior in magnetite grains, with distinct populations identified through low-temperature measurements of the Verwey transition. Petrographic observations indicate that the original sediment was an Fe–Si mud consisting of a ferrihydrite–silica mixture formed in the water column. This assemblage was rapidly transformed into nano-scale hematite embedded in silica as indicated by a honeycomb structure composed of Si-spherules distributed in a microscale hematite matrix. Textural relationships show that the nucleation of magnetite started during or soon after the formation of hematite, as indicated by the preservation of the Si-spherules within magnetite cores. Further magnetite overgrowth stages are characterized by inclusion-free rims, associated with continuous Si supply during the evolving diagenetic or early metamorphic stages. These findings, combined with existing literature, suggest that ferrihydrite precipitated alongside Si and organic material, later crystallizing as hematite on the seafloor. Anaerobic respiration by Fe(III)-reducing microorganisms likely contributed to early magnetite formation in a fluid-saturated, unconsolidated sediment. Subsequent low-grade metamorphism and Si mobilization led to palisade quartz precipitation and a second stage of magnetite growth likely formed at the expense of matrix hematite through thermochemical Fe(III) reduction. Low-temperature magnetic analyses revealed that the two generations of magnetite core and rim are associated with specific stoichiometry.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 6","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1