Ferruginous (iron-rich) conditions have been prominent in oceans throughout the Earth's geologic history but now are reliably found only in a handful of permanently stratified lakes. Microbially mediated iron reduction in such anoxic environments competes with sulfate reduction, which promotes euxinic (sulfide-rich) conditions. Besides the shared demand for organic compounds, the competition is fostered by the produced hydrogen sulfide, which may reduce iron oxides abiotically or co-precipitate with dissolved iron as iron sulfides. Understanding why some environments develop ferruginous rather than euxinic conditions (or vice versa), as well as the attendant effects on methanogenic fermentation, is key to understanding both modern and ancient anoxic ecosystems. Here, we reproduce biogeochemical distributions in multiple anoxic, low-sulfate, meromictic lakes around the world using a biomass-explicit reaction-transport model with a fixed set of metabolism-specific microbial parameters. The results suggest that sulfate reduction and methanogenesis are ubiquitous even in iron-rich systems, and are reflected in microbial surveys. Ferruginous conditions typically develop for surface sulfate concentrations below ≃100 μM. Interestingly, there seems to be a dearth of stably stratified water bodies where sulfate concentrations can persist in the medium-sulfate range of several hundred μM. Rather, when sulfur burial into the sediments becomes iron limited, sulfate tends to accumulate in the water column to much higher (mM) concentrations. A similar mechanism could be suggested to have operated in the variably sulfidic and ferruginous water columns of early oceans. Model simulations also reveal the previously underappreciated role of physical transport in shaping biogeochemical distributions, as minor variations in mixing rates can lead to large variations in microbial abundances. Model applicability across multiple lakes points to an encouraging possibility that geochemical patterns in complex biogeochemical systems may be described from a small number of thermodynamic and kinetic principles using a minimum of fitting parameters.
Tasik Biru is a ~70 m-deep tropical lake in Malaysia, originating from a water-filled open pit mine. We investigated the biogeochemistry and microbial community of the lake as a modern model habitat to the stratified ancient ocean. We found that a sharp redoxcline exists at around 50 m depth, related to the decrease of O2 and pH (7.2–6.8) going down into the monimolimnion. Despite being relatively sulfate-rich (~320 μM), only a slight decrease of sulfate (to ~240 μM) was observed coupled with an increase of dissolved sulfide to 4 μM, attributed to microbial sulfate reduction in the monimolimnion. Comparatively, dissolved Fe and total Mn rose to ~50 μM in the anoxic layer with an unusual 1:1 concentration ratio. Other nutrients (PO43−, Si) and trace metal(loid)s (As, Mo, Sb, Co, U, and V) depth profiles increased or decreased across the chemocline, indicating controls via cycling of redox-sensitive elements. Microbial community analysis based on 16S rRNA amplicon sequencing reflects various metabolisms, from aerobic metabolisms in the mixolimnion to putative nitrite-dependent methane oxidation (e.g., by Methylomirabilis) at the chemocline, to sulfate reduction, methanogenesis, and fermentation in the monimolimnion. Tasik Biru is not in steady-state, and its anoxic water is predicted to shift from being Fe/Mn-rich to sulfide-rich, perhaps lending it as a model habitat to investigate biogeochemical changes from the metal-rich Archean to the Proterozoic oceans with expanding zones of sulfide-rich margins. An overview of the current biogeochemical cycles in the lake is presented, and open questions regarding partial sulfate consumption, methane, and Mn cycling and mineralogical distribution are highlighted to guide future studies.