Using graphlet degree vectors to predict atomic displacement parameters in protein structures.

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Acta Crystallographica. Section D, Structural Biology Pub Date : 2023-12-01 Epub Date: 2023-11-21 DOI:10.1107/S2059798323009142
Jure Pražnikar
{"title":"Using graphlet degree vectors to predict atomic displacement parameters in protein structures.","authors":"Jure Pražnikar","doi":"10.1107/S2059798323009142","DOIUrl":null,"url":null,"abstract":"<p><p>In structural biology, atomic displacement parameters, commonly used in the form of B values, describe uncertainties in atomic positions. Their distribution over the structure can provide hints on local structural reliability and mobility. A spatial macromolecular model can be represented by a graph whose nodes are atoms and whose edges correspond to all interatomic contacts within a certain distance. Small connected subgraphs, called graphlets, provide information about the wiring of a particular atom. The multiple linear regression approach based on this information aims to predict a distribution of values of isotropic atomic displacement parameters (B values) within a protein structure, given the atomic coordinates and molecular packing. By modeling the dynamic component of atomic uncertainties, this method allows the B values obtained from experimental crystallographic or cryo-electron microscopy studies to be reproduced relatively well.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"1109-1119"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798323009142","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In structural biology, atomic displacement parameters, commonly used in the form of B values, describe uncertainties in atomic positions. Their distribution over the structure can provide hints on local structural reliability and mobility. A spatial macromolecular model can be represented by a graph whose nodes are atoms and whose edges correspond to all interatomic contacts within a certain distance. Small connected subgraphs, called graphlets, provide information about the wiring of a particular atom. The multiple linear regression approach based on this information aims to predict a distribution of values of isotropic atomic displacement parameters (B values) within a protein structure, given the atomic coordinates and molecular packing. By modeling the dynamic component of atomic uncertainties, this method allows the B values obtained from experimental crystallographic or cryo-electron microscopy studies to be reproduced relatively well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用石墨烯度向量预测蛋白质结构中的原子位移参数。
在结构生物学中,原子位移参数通常以B值的形式来描述原子位置的不确定性。它们在结构上的分布可以提供局部结构可靠性和流动性的线索。空间大分子模型可以用一个图来表示,该图的节点是原子,其边对应于一定距离内所有原子间的接触。称为graphlet的小连接子图提供了有关特定原子连接的信息。基于这些信息的多元线性回归方法旨在预测各向同性原子位移参数(B值)在给定原子坐标和分子填充的蛋白质结构中的分布。通过模拟原子不确定度的动态成分,该方法可以较好地再现实验晶体学或低温电子显微镜研究获得的B值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
期刊最新文献
The success rate of processed predicted models in molecular replacement: implications for experimental phasing in the AlphaFold era. EMhub: a web platform for data management and on-the-fly processing in scientific facilities. Welcoming two new Co-editors. CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments. Robust and automatic beamstop shadow outlier rejection: combining crystallographic statistics with modern clustering under a semi-supervised learning strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1