A statistical learning approach to land valuation: Optimizing the use of external information

IF 1.4 3区 经济学 Q3 ECONOMICS Journal of Housing Economics Pub Date : 2022-12-01 DOI:10.1016/j.jhe.2022.101873
David Albouy , Minchul Shin
{"title":"A statistical learning approach to land valuation: Optimizing the use of external information","authors":"David Albouy ,&nbsp;Minchul Shin","doi":"10.1016/j.jhe.2022.101873","DOIUrl":null,"url":null,"abstract":"<div><p><span>We develop a statistical learning model to estimate the value of vacant land for any parcel, regardless of improvements. Rooted in </span>economic theory, the model optimizes how to combine common improved property sales with rare, but more informative, vacant land sales. It estimates how land values change with geography and other features, and determines how much information either vacant or improved sales provide to nearby areas through two levels of spatial correlation. For most neighborhoods, incorporating improved sales often doubles the certainty of land value estimates. Relative to conventional estimators, our method mitigates problems from excess variance and sample selection.</p></div>","PeriodicalId":51490,"journal":{"name":"Journal of Housing Economics","volume":"58 ","pages":"Article 101873"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Housing Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051137722000456","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a statistical learning model to estimate the value of vacant land for any parcel, regardless of improvements. Rooted in economic theory, the model optimizes how to combine common improved property sales with rare, but more informative, vacant land sales. It estimates how land values change with geography and other features, and determines how much information either vacant or improved sales provide to nearby areas through two levels of spatial correlation. For most neighborhoods, incorporating improved sales often doubles the certainty of land value estimates. Relative to conventional estimators, our method mitigates problems from excess variance and sample selection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土地估价的统计学习方法:优化外部信息的使用
我们开发了一个统计学习模型来估计任何地块的空置土地价值,而不考虑改善情况。基于经济学理论,该模型优化了如何将常见的改良物业销售与罕见但信息更丰富的空置土地销售结合起来。它估计土地价值如何随着地理和其他特征而变化,并通过两级空间相关性确定空置或改善销售给附近地区提供了多少信息。对大多数社区来说,将改善的销售纳入其中,往往会使土地价值估算的确定性增加一倍。与传统的估计方法相比,我们的方法减轻了过度方差和样本选择的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
4.20%
发文量
35
期刊介绍: The Journal of Housing Economics provides a focal point for the publication of economic research related to housing and encourages papers that bring to bear careful analytical technique on important housing-related questions. The journal covers the broad spectrum of topics and approaches that constitute housing economics, including analysis of important public policy issues.
期刊最新文献
Sea-level rise, groundwater quality, and the impacts on coastal homeowners’ decisions to sell The effect of flood risk on house prices in the Basque Country Discrimination in the Austrian rental housing market: The effect of information concerning first and second-generation immigrant status Gobi wind blows housing price away: Willingness to pay for clean air in China Does flood risk affect property prices? Evidence from a property-level flood score
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1