John Takyi-Williams, Abbie D Leino, Ruiting Li, Kevin J Downes, Athena F Zuppa, Amanda Bwint, Bo Wen, Duxin Sun, Marc H Scheetz, Manjunath P Pai
{"title":"Bioanalysis of six antibiotics from volumetric microsamples: a new tool for precision dosing in critically ill children.","authors":"John Takyi-Williams, Abbie D Leino, Ruiting Li, Kevin J Downes, Athena F Zuppa, Amanda Bwint, Bo Wen, Duxin Sun, Marc H Scheetz, Manjunath P Pai","doi":"10.4155/bio-2023-0171","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Volumetric absorptive microsamples (VAMS) can support pharmacokinetic / pharmacodynamic studies. We present the bioanalytical method development for the simultaneous quantification of ampicillin, cefepime, ceftriaxone, meropenem, piperacillin, tazobactam, and vancomycin from VAMS. <b>Methods & results:</b> Optimal extraction, chromatographic, and mass spectrometry conditions were identified. Maximum extraction recoveries included 100 μl of water for rehydration and methanol for protein precipitation. Chromatographic separation used Phenomenex Kinetex<sup>™</sup> Polar C18 column with a mobile phase comprising water/acetonitrile with formic acid and was fully validated. Hematocrit effects were only observed for vancomycin. Samples were stable for 90 days at -80°C except for meropenem, which was stable for 60 days. <b>Conclusion:</b> Multiple antibiotics can be assayed from a single VAMS sample to facilitate pharmacokinetic/pharmacodynamic studies.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"19-31"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4155/bio-2023-0171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Volumetric absorptive microsamples (VAMS) can support pharmacokinetic / pharmacodynamic studies. We present the bioanalytical method development for the simultaneous quantification of ampicillin, cefepime, ceftriaxone, meropenem, piperacillin, tazobactam, and vancomycin from VAMS. Methods & results: Optimal extraction, chromatographic, and mass spectrometry conditions were identified. Maximum extraction recoveries included 100 μl of water for rehydration and methanol for protein precipitation. Chromatographic separation used Phenomenex Kinetex™ Polar C18 column with a mobile phase comprising water/acetonitrile with formic acid and was fully validated. Hematocrit effects were only observed for vancomycin. Samples were stable for 90 days at -80°C except for meropenem, which was stable for 60 days. Conclusion: Multiple antibiotics can be assayed from a single VAMS sample to facilitate pharmacokinetic/pharmacodynamic studies.
BioanalysisBIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍:
Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing.
The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality.
Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing.
The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques.
Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.