A Computational Software for Training Robust Drug-Target Affinity Prediction Models: pydebiaseddta.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2023-11-01 DOI:10.1089/cmb.2023.0194
Melİh Barsbey, Riza ÖZçelİk, Alperen Bağ, Berk Atil, Arzucan ÖZgür, Elif Ozkirimli
{"title":"A Computational Software for Training Robust Drug-Target Affinity Prediction Models: pydebiaseddta.","authors":"Melİh Barsbey, Riza ÖZçelİk, Alperen Bağ, Berk Atil, Arzucan ÖZgür, Elif Ozkirimli","doi":"10.1089/cmb.2023.0194","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":"30 11","pages":"1240-1245"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0194","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust generalization of drug-target affinity (DTA) prediction models is a notoriously difficult problem in computational drug discovery. In this article, we present pydebiaseddta: a computational software for improving the generalizability of DTA prediction models to novel ligands and/or proteins. pydebiaseddta serves as the practical implementation of the DebiasedDTA training framework, which advocates modifying the training distribution to mitigate the effect of spurious correlations in the training data set that leads to substantially degraded performance for novel ligands and proteins. Written in Python programming language, pydebiaseddta combines a user-friendly streamlined interface with a feature-rich and highly modifiable architecture. With this article we introduce our software, showcase its main functionalities, and describe practical ways for new users to engage with it.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于训练稳健药物-靶标亲和力预测模型的计算软件:pydebiasedta。
药物靶标亲和力(DTA)预测模型的鲁棒泛化是计算药物发现中的一个众所周知的难题。在本文中,我们提出了pydebiaseddta:一个计算软件,用于提高DTA预测模型对新配体和/或蛋白质的通用性。pydebiaseddta是DebiasedDTA训练框架的实际实现,它主张修改训练分布,以减轻训练数据集中的虚假相关性的影响,这些虚假相关性会导致新配体和蛋白质的性能大幅下降。pydebiaseddta用Python编程语言编写,将用户友好的流线型界面与功能丰富且高度可修改的体系结构相结合。在本文中,我们介绍了我们的软件,展示了它的主要功能,并描述了新用户使用它的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1