{"title":"Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage.","authors":"Yingxin Hu, Yanjun Liu, Yuefei Yang","doi":"10.1089/cmb.2024.0697","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of big data and artificial intelligence technologies, the limitations inherent in traditional storage media for accommodating vast amounts of data have become increasingly evident. DNA storage is an innovative approach harnessing DNA and other biomolecules as storage mediums, endowed with superior characteristics including expansive capacity, remarkable density, minimal energy requirements, and unparalleled longevity. Central to the efficient DNA storage is the process of DNA coding, whereby digital information is converted into sequences of DNA bases. A novel encoding method based on adaptive arithmetic coding (AAC) has been introduced, delineating the encoding process into three distinct phases: compression, error correction, and mapping. Prediction by Partial Matching (PPM)-based AAC in the compression phase serves to compress data and enhance storage density. Subsequently, the error correction phase relies on octal Hamming code to rectify errors and safeguard data integrity. The mapping phase employs a \"3-2 code\" mapping relationship to ensure adherence to biochemical constraints. The proposed method was verified by encoding different formats of files such as text, pictures, and audio. The results indicated that the average coding density of bases can be up to 3.25 per nucleotide, the GC content (which includes guanine [G] and cytosine [C]) can be stabilized at 50% and the homopolymer length is restricted to no more than 2. Simulation experimental results corroborate the method's efficacy in preserving data integrity during both reading and writing operations, augmenting storage density, and exhibiting robust error correction capabilities.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0697","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of big data and artificial intelligence technologies, the limitations inherent in traditional storage media for accommodating vast amounts of data have become increasingly evident. DNA storage is an innovative approach harnessing DNA and other biomolecules as storage mediums, endowed with superior characteristics including expansive capacity, remarkable density, minimal energy requirements, and unparalleled longevity. Central to the efficient DNA storage is the process of DNA coding, whereby digital information is converted into sequences of DNA bases. A novel encoding method based on adaptive arithmetic coding (AAC) has been introduced, delineating the encoding process into three distinct phases: compression, error correction, and mapping. Prediction by Partial Matching (PPM)-based AAC in the compression phase serves to compress data and enhance storage density. Subsequently, the error correction phase relies on octal Hamming code to rectify errors and safeguard data integrity. The mapping phase employs a "3-2 code" mapping relationship to ensure adherence to biochemical constraints. The proposed method was verified by encoding different formats of files such as text, pictures, and audio. The results indicated that the average coding density of bases can be up to 3.25 per nucleotide, the GC content (which includes guanine [G] and cytosine [C]) can be stabilized at 50% and the homopolymer length is restricted to no more than 2. Simulation experimental results corroborate the method's efficacy in preserving data integrity during both reading and writing operations, augmenting storage density, and exhibiting robust error correction capabilities.
随着大数据和人工智能技术的快速发展,传统存储介质在容纳海量数据方面的局限性日益明显。DNA 存储是一种利用 DNA 和其他生物大分子作为存储介质的创新方法,具有容量大、密度高、能耗低和寿命长等优越特性。高效 DNA 存储的核心是 DNA 编码过程,即把数字信息转换成 DNA 碱基序列的过程。一种基于自适应算术编码(AAC)的新型编码方法已经问世,它将编码过程划分为三个不同的阶段:压缩、纠错和映射。在压缩阶段,基于部分匹配预测(PPM)的自适应算术编码可压缩数据并提高存储密度。随后,纠错阶段依靠八进制汉明码来纠正错误并保护数据完整性。映射阶段采用 "3-2 码 "映射关系,以确保遵守生化约束。通过对文本、图片和音频等不同格式的文件进行编码,对所提出的方法进行了验证。模拟实验结果表明,该方法能在读写操作中保持数据的完整性,提高存储密度,并具有强大的纠错能力。
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases