The Dynamics of Social Interaction Among Evolved Model Agents

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2024-03-01 DOI:10.1162/artl_a_00417
Haily Merritt;Gabriel J. Severino;Eduardo J. Izquierdo
{"title":"The Dynamics of Social Interaction Among Evolved Model Agents","authors":"Haily Merritt;Gabriel J. Severino;Eduardo J. Izquierdo","doi":"10.1162/artl_a_00417","DOIUrl":null,"url":null,"abstract":"We offer three advances to the perceptual crossing simulation studies, which are aimed at challenging methodological individualism in the analysis of social cognition. First, we evolve and systematically test agents in rigorous conditions, identifying a set of 26 “robust circuits” with consistently high and generalizing performance. Next, we transform the sensor from discrete to continuous, facilitating a bifurcation analysis of the dynamics that shows that nonequilibrium dynamics are key to the mutual maintenance of interaction. Finally, we examine agents’ performance with partners whose neural controllers are different from their own and with decoy objects of fixed frequency and amplitude. Nonclonal performance varies and is not predicted by genotypic distance. Frequency-amplitude values that fool the focal agent do not include the agent’s own values. Altogether, our findings accentuate the importance of dynamical and nonclonal analyses for simulated sociality, emphasize the role of dialogue between artificial and human studies, and highlight the contributions of simulation studies to understanding social interactions.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 2","pages":"216-239"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10541912/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We offer three advances to the perceptual crossing simulation studies, which are aimed at challenging methodological individualism in the analysis of social cognition. First, we evolve and systematically test agents in rigorous conditions, identifying a set of 26 “robust circuits” with consistently high and generalizing performance. Next, we transform the sensor from discrete to continuous, facilitating a bifurcation analysis of the dynamics that shows that nonequilibrium dynamics are key to the mutual maintenance of interaction. Finally, we examine agents’ performance with partners whose neural controllers are different from their own and with decoy objects of fixed frequency and amplitude. Nonclonal performance varies and is not predicted by genotypic distance. Frequency-amplitude values that fool the focal agent do not include the agent’s own values. Altogether, our findings accentuate the importance of dynamical and nonclonal analyses for simulated sociality, emphasize the role of dialogue between artificial and human studies, and highlight the contributions of simulation studies to understanding social interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化模型主体之间的社会互动动力学。
我们对知觉交叉模拟研究提供了三个方面的进展,这些研究旨在挑战社会认知分析中的方法论个人主义。首先,我们在严格的条件下进化和系统地测试代理,确定一组26个“稳健电路”,具有始终如一的高性能和泛化性能。接下来,我们将传感器从离散转换为连续,促进动力学的分岔分析,表明非平衡动力学是相互作用的相互维持的关键。最后,我们考察了智能体在与自己的神经控制器不同的伙伴以及固定频率和振幅的诱饵对象下的表现。非克隆表现不同,不能通过基因型距离预测。欺骗震源代理的频率-振幅值不包括代理自己的值。总之,我们的研究结果强调了动态和非克隆分析对模拟社会的重要性,强调了人工研究和人类研究之间对话的作用,并强调了模拟研究对理解社会互动的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1