Libin Hong, Xinmeng Yu, Guofang Tao, Ender Özcan, John Woodward
{"title":"A sequential quadratic programming based strategy for particle swarm optimization on single-objective numerical optimization","authors":"Libin Hong, Xinmeng Yu, Guofang Tao, Ender Özcan, John Woodward","doi":"10.1007/s40747-023-01269-z","DOIUrl":null,"url":null,"abstract":"<p>Over the last decade, particle swarm optimization has become increasingly sophisticated because well-balanced exploration and exploitation mechanisms have been proposed. The sequential quadratic programming method, which is widely used for real-parameter optimization problems, demonstrates its outstanding local search capability. In this study, two mechanisms are proposed and integrated into particle swarm optimization for single-objective numerical optimization. A novel ratio adaptation scheme is utilized for calculating the proportion of subpopulations and intermittently invoking the sequential quadratic programming for local search start from the best particle to seek a better solution. The novel particle swarm optimization variant was validated on CEC2013, CEC2014, and CEC2017 benchmark functions. The experimental results demonstrate impressive performance compared with the state-of-the-art particle swarm optimization-based algorithms. Furthermore, the results also illustrate the effectiveness of the two mechanisms when cooperating to achieve significant improvement.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"29 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01269-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the last decade, particle swarm optimization has become increasingly sophisticated because well-balanced exploration and exploitation mechanisms have been proposed. The sequential quadratic programming method, which is widely used for real-parameter optimization problems, demonstrates its outstanding local search capability. In this study, two mechanisms are proposed and integrated into particle swarm optimization for single-objective numerical optimization. A novel ratio adaptation scheme is utilized for calculating the proportion of subpopulations and intermittently invoking the sequential quadratic programming for local search start from the best particle to seek a better solution. The novel particle swarm optimization variant was validated on CEC2013, CEC2014, and CEC2017 benchmark functions. The experimental results demonstrate impressive performance compared with the state-of-the-art particle swarm optimization-based algorithms. Furthermore, the results also illustrate the effectiveness of the two mechanisms when cooperating to achieve significant improvement.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.