{"title":"Enhancing cyber defense strategies with discrete multi-dimensional Z-numbers: a multi-attribute decision-making approach","authors":"Aiting Yao, Huang Chen, Weiqi Zhang, Chengzu Dong, Meiqu Lu, Junjun Mao, Xiao Liu, Xuejun Li","doi":"10.1007/s40747-025-01786-z","DOIUrl":null,"url":null,"abstract":"<p>With the rapid advancement of intelligent technologies and network environments, the efficient and accurate handling of uncertain decision-making information has become an urgent challenge. Traditional methods often struggle to process complex and incomplete information, especially in cyber defense. To address this, we introduce discrete multi-dimensional Z-numbers (MZs) as a mathematical tool for modeling uncertainty and reliability in network defense decisions. This paper proposes a synthesis method for MZs, enabling the integration of multi-source information while considering both uncertainty and reliability. By leveraging a hidden probability model, we extend MZs into multi-dimensional Z<sup>+</sup>-numbers, enhancing their expressiveness in handling uncertainty. Furthermore, we define utility functions based on MZs and develop a multi-attribute group decision-making framework tailored for network defense. This approach offers a novel perspective for designing strategies against highly adaptive and covert cyberattacks. The proposed method is validated through a case study on the network security assessment of an intelligent logistics company. Results demonstrate significant improvements in the accuracy and efficiency of decision-making, highlighting the method’s advantages and broad potential in cyber defense. Beyond logistics, this integrated <i>MZ</i>-based decision framework provides an adaptable and intelligent tool for strengthening network security defenses.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"183 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01786-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of intelligent technologies and network environments, the efficient and accurate handling of uncertain decision-making information has become an urgent challenge. Traditional methods often struggle to process complex and incomplete information, especially in cyber defense. To address this, we introduce discrete multi-dimensional Z-numbers (MZs) as a mathematical tool for modeling uncertainty and reliability in network defense decisions. This paper proposes a synthesis method for MZs, enabling the integration of multi-source information while considering both uncertainty and reliability. By leveraging a hidden probability model, we extend MZs into multi-dimensional Z+-numbers, enhancing their expressiveness in handling uncertainty. Furthermore, we define utility functions based on MZs and develop a multi-attribute group decision-making framework tailored for network defense. This approach offers a novel perspective for designing strategies against highly adaptive and covert cyberattacks. The proposed method is validated through a case study on the network security assessment of an intelligent logistics company. Results demonstrate significant improvements in the accuracy and efficiency of decision-making, highlighting the method’s advantages and broad potential in cyber defense. Beyond logistics, this integrated MZ-based decision framework provides an adaptable and intelligent tool for strengthening network security defenses.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.