Multiphase flow in PEM water electrolyzers: a mini-review

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Opinion in Chemical Engineering Pub Date : 2023-11-21 DOI:10.1016/j.coche.2023.100988
Xiaoping Guan , Jinhao Bai , Jingchang Zhang , Ning Yang
{"title":"Multiphase flow in PEM water electrolyzers: a mini-review","authors":"Xiaoping Guan ,&nbsp;Jinhao Bai ,&nbsp;Jingchang Zhang ,&nbsp;Ning Yang","doi":"10.1016/j.coche.2023.100988","DOIUrl":null,"url":null,"abstract":"<div><p>In comparison to alternative water electrolysis technologies, polymer electrolyte membrane water electrolysis (PEMWE) has several advantages, such as high-voltage efficiency, pure gas production, short response time, and the capability to operate under high pressure and current density. A thorough comprehension of the multiphase flow characteristics within the porous transport layer (PTL) and flow channels is vital to enhance the efficiency of PEMWE. This paper presents an overview of current knowledge on multiphase flow in PEMWE and relevant modeling methods, highlighting the significance of regulating the microstructure of PTL and distinguishing the effects of multiphase flow in the flow channel from those in PTL. Moreover, to simulate PEMWE accurately, it is crucial to consider comprehensive physical and electrochemical processes and develop dependable closure models.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100988"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In comparison to alternative water electrolysis technologies, polymer electrolyte membrane water electrolysis (PEMWE) has several advantages, such as high-voltage efficiency, pure gas production, short response time, and the capability to operate under high pressure and current density. A thorough comprehension of the multiphase flow characteristics within the porous transport layer (PTL) and flow channels is vital to enhance the efficiency of PEMWE. This paper presents an overview of current knowledge on multiphase flow in PEMWE and relevant modeling methods, highlighting the significance of regulating the microstructure of PTL and distinguishing the effects of multiphase flow in the flow channel from those in PTL. Moreover, to simulate PEMWE accurately, it is crucial to consider comprehensive physical and electrochemical processes and develop dependable closure models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEM水电解槽中的多相流:综述
与其他水电解技术相比,聚合物电解质膜水电解(PEMWE)具有电压效率高、产气纯净、响应时间短、能够在高压和高电流密度下运行等优点。深入了解多孔输运层内的多相流动特性和流动通道对于提高PEMWE的效率至关重要。本文综述了PEMWE中多相流的现有知识和相关建模方法,强调了调节PTL微观结构以及区分流道内多相流与PTL内多相流影响的重要性。此外,为了准确地模拟PEMWE,综合考虑物理和电化学过程并建立可靠的闭合模型至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
期刊最新文献
New advance in application research of high-gravity process intensification technology Editorial Board Distillation in high gravity chemical engineering Gas–liquid and liquid–liquid vortex technology for process intensification Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1