Pub Date : 2024-11-16DOI: 10.1016/j.coche.2024.101057
Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen
Process intensification (PI) has generated considerable interest as a potential avenue for sustainable and green development within the chemical industry. High gravity (HiGee) technology is regarded as a significant breakthrough in PI, as it has possessed the potential to increase the mass transfer rate by ∼1–3 orders of magnitude in comparison to conventional equipment. Rotating packed bed (RPB), as a classical HiGee apparatus, has been proven to have great advantages for application in various chemical engineering fields, for it can provide large contact area between phases, faster surface renewal rate and more homogeneous nucleation sites, and so on. As research on HiGee technology has become more advanced, it is necessary to collate the various studies on the application of HiGee technology in different fields systematically. This work mainly reviews the research progresses of HiGee technology in synthesis of chemicals, preparation of particles, and separation in recent 5 years. Specifically, the latest applications of HiGee technology under different demands and novel structures of RPB designed for various working conditions are presented. Finally, the opportunities and further research directions of the HiGee technology are proposed.
{"title":"New advance in application research of high-gravity process intensification technology","authors":"Jia-Min Lu , Yu-Gan Zhu , Yan-Bin Li , Guang-Wen Chu , Jian-Feng Chen","doi":"10.1016/j.coche.2024.101057","DOIUrl":"10.1016/j.coche.2024.101057","url":null,"abstract":"<div><div>Process intensification (PI) has generated considerable interest as a potential avenue for sustainable and green development within the chemical industry. High gravity (HiGee) technology is regarded as a significant breakthrough in PI, as it has possessed the potential to increase the mass transfer rate by ∼1–3 orders of magnitude in comparison to conventional equipment. Rotating packed bed (RPB), as a classical HiGee apparatus, has been proven to have great advantages for application in various chemical engineering fields, for it can provide large contact area between phases, faster surface renewal rate and more homogeneous nucleation sites, and so on. As research on HiGee technology has become more advanced, it is necessary to collate the various studies on the application of HiGee technology in different fields systematically. This work mainly reviews the research progresses of HiGee technology in synthesis of chemicals, preparation of particles, and separation in recent 5 years. Specifically, the latest applications of HiGee technology under different demands and novel structures of RPB designed for various working conditions are presented. Finally, the opportunities and further research directions of the HiGee technology are proposed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101057"},"PeriodicalIF":8.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.coche.2024.101058
Guangquan Wang, Jianbing Ji
Distillation is the most widely used separation process in industry, typically carried out in large, tall columns that dominate the skylines of chemical facilities. High gravity technology (Higee) aims to enhance mass transfer through the application of high centrifugal forces, presenting a promising approach to significantly reduce the size of distillation columns. However, Higee has not yet been fully integrated into distillation processes. A key reason for this limited application is that Higee devices need to be customized to meet the specific requirements of distillation. This article introduces a generally preferred Higee structure designed for this purpose, taking into account several critical considerations, including liquid distribution, dynamic sealing, intermediate feeding, and multirotor configurations. Most importantly, to tackle the longstanding issue of variable flow cross-sections in traditional Higee devices, an innovative rotor design with constant vapor flow area was proposed. This rotor, combined with the advantageous features of the favorable Higee structure, will open up new opportunities for the application of Higee technology in distillation processes.
{"title":"Distillation in high gravity chemical engineering","authors":"Guangquan Wang, Jianbing Ji","doi":"10.1016/j.coche.2024.101058","DOIUrl":"10.1016/j.coche.2024.101058","url":null,"abstract":"<div><div>Distillation is the most widely used separation process in industry, typically carried out in large, tall columns that dominate the skylines of chemical facilities. High gravity technology (Higee) aims to enhance mass transfer through the application of high centrifugal forces, presenting a promising approach to significantly reduce the size of distillation columns. However, Higee has not yet been fully integrated into distillation processes. A key reason for this limited application is that Higee devices need to be customized to meet the specific requirements of distillation. This article introduces a generally preferred Higee structure designed for this purpose, taking into account several critical considerations, including liquid distribution, dynamic sealing, intermediate feeding, and multirotor configurations. Most importantly, to tackle the longstanding issue of variable flow cross-sections in traditional Higee devices, an innovative rotor design with constant vapor flow area was proposed. This rotor, combined with the advantageous features of the favorable Higee structure, will open up new opportunities for the application of Higee technology in distillation processes.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"47 ","pages":"Article 101058"},"PeriodicalIF":8.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.coche.2024.101056
Afroditi Kourou, Siyuan Chen, Yi Ouyang
The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.
{"title":"Gas–liquid and liquid–liquid vortex technology for process intensification","authors":"Afroditi Kourou, Siyuan Chen, Yi Ouyang","doi":"10.1016/j.coche.2024.101056","DOIUrl":"10.1016/j.coche.2024.101056","url":null,"abstract":"<div><div>The quest for efficient, sustainable chemical processes drives the advancement of process intensification methods. This study evaluates vortex technology, which utilizes controlled, confined swirling flows to enhance mixing and mass and heat transfer, improving process efficiency. Its potential is assessed by examining its principles, design and optimization parameters, current and prospective applications, and challenges in scaling up and commercialization. It is particularly suited when enhanced efficiency in mixing, transport performance, and cavitation is required, especially in systems involving fast reactions, short residence times, and space constraints. Furthermore, it shows promise in developing compact and efficient contacting devices with reduced energy consumption.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101056"},"PeriodicalIF":8.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-31DOI: 10.1016/j.coche.2024.101054
Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko
Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C3N4 and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C3N4/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m3 of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.
近年来,Z-scheme 异质结是太阳光区光催化材料中最有前途的方法之一,可用于各种环境应用,包括去除药物和个人护理产品(PPCPs)。通过 Z 型方案将 g-C3N4 和铋基半导体整合在一起,可高效提供电荷载流子流和合适的氧化还原位点。g-C3N4/Bi 基光催化剂是通过水热法、共沉淀法、共煅烧法、溶热缩聚法或离子交换/光还原法合成的。四环素、氧氟沙星、环丙沙星、左氧氟沙星、头孢克肟和卡马西平等环境污染物的降解效率超过 90%。在这些 Z 方案中发现的主要反应物是超氧自由基、羟自由基和电子-空穴对。最佳工艺显示,每订单 700-800 千瓦时/立方米的电能(EEO)在经济上是可行的。对于太阳光驱动的工艺,能量可以被称为 "免费"(太阳光),但 EEO 可以用来比较新的开发成果。在今后的研究中,应考虑工艺的经济性、实际废水的有效性,包括高盐度条件和光催化剂稳定性评估以及金属沥滤。
{"title":"Graphitic carbon nitride/bismuth-based Z-scheme heterojunctions for the photocatalytic removal of pharmaceuticals and personal care products — a review","authors":"Ayesha Javaid , Muhammad Imran , Manoj P Rayaroth , Xun Sun , Chongqing Wang , Grzegorz Boczkaj , Malwina Momotko","doi":"10.1016/j.coche.2024.101054","DOIUrl":"10.1016/j.coche.2024.101054","url":null,"abstract":"<div><div>Z-scheme heterojunction in recent years is one of the most promising approaches in photocatalytic materials in solar light region for various environmental applications, including the removal of pharmaceuticals and personal care products (PPCPs). Integrating g-C<sub>3</sub>N<sub>4</sub> and Bi-based semiconductors via Z-scheme is highly effective in providing efficient flow of charge carriers along with suitable redox sites. The g-C<sub>3</sub>N<sub>4</sub>/Bi-based photocatalysts were synthesized by hydrothermal, co-precipitation, co-calcination, solvothermal polycondensation, or ion exchange/photoreduction. Environmental pollutants, such as tetracycline, ofloxacin, ciprofloxacin, levofloxacin, cefixime, and carbamazepine, were degraded with efficiency exceeding 90%. The major reactive species identified in those Z-schemes were superoxide radicals, hydroxyl radicals, and electron-holes pair. Best processes revealed economically feasible with 700–800 kWh/m<sup>3</sup> of electric energy per order (EEO). For solar light–driven processes, energy can be named as ‘free’ (sunlight), but EEO allows to compare new developments. In future studies, process economic aspect, effectiveness in case of real effluents, including high-salinity conditions and evaluation of photocatalysts stability, and metals leaching should be addressed.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101054"},"PeriodicalIF":8.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.coche.2024.101055
Yasser Vasseghian , Sang-Woo Joo , Jaebum Choo , Michael Badawi , Tejraj M Aminabhavi
A critical review is presented on the analysis of photocatalytic materials in hydrogen generation from solar energy covering the literature of the past 5 years. The materials covered include semiconductor metal oxides, perovskites, metal chalcogenides, metal-organic frameworks, graphitic carbon nitride, and plasmonic materials. The results are analyzed critically and reviewed with regard to their future trends in photocatalytic hydrogen generation from solar energy to identify promising new areas to stimulate research in this area.
{"title":"Photocatalytic materials for solar-driven hydrogen generation","authors":"Yasser Vasseghian , Sang-Woo Joo , Jaebum Choo , Michael Badawi , Tejraj M Aminabhavi","doi":"10.1016/j.coche.2024.101055","DOIUrl":"10.1016/j.coche.2024.101055","url":null,"abstract":"<div><div>A critical review is presented on the analysis of photocatalytic materials in hydrogen generation from solar energy covering the literature of the past 5 years. The materials covered include semiconductor metal oxides, perovskites, metal chalcogenides, metal-organic frameworks, graphitic carbon nitride, and plasmonic materials. The results are analyzed critically and reviewed with regard to their future trends in photocatalytic hydrogen generation from solar energy to identify promising new areas to stimulate research in this area.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101055"},"PeriodicalIF":8.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.coche.2024.101053
Rens J Horst , Antoni Forner-Cuenca
Porous electrodes — typically referred to as catalyst layers — are critical components in polymer electrolyte fuel cells and several electrochemical technologies, where they determine the performance, durability, and cost of the system. The electrodes are responsible for sustaining electrochemical reactions, delivering reactants and removing products, and providing electronic and ionic transport. Simultaneously providing these functions necessitates sophisticated control over material properties across multiple length scales, making electrode design an important field of research. Here, we review recent trends in electrode engineering with a focus on optimizing complex mass transport phenomena to advance polymer electrolyte fuel cells. We first describe approaches to produce hierarchically organized electrode structures. Then, we discuss methods to control the support morphology, followed by strategies to functionalize the support chemical composition. We then highlight emerging trends in ionomer engineering and conclude with recommendations for standardized testing and the need to assess the end-of-life performance of novel electrode structures.
{"title":"Electrode engineering strategies to advance polymer electrolyte fuel cells — recent progress and opportunities","authors":"Rens J Horst , Antoni Forner-Cuenca","doi":"10.1016/j.coche.2024.101053","DOIUrl":"10.1016/j.coche.2024.101053","url":null,"abstract":"<div><div>Porous electrodes — typically referred to as <em>catalyst layers</em> — are critical components in polymer electrolyte fuel cells and several electrochemical technologies, where they determine the performance, durability, and cost of the system. The electrodes are responsible for sustaining electrochemical reactions, delivering reactants and removing products, and providing electronic and ionic transport. Simultaneously providing these functions necessitates sophisticated control over material properties across multiple length scales, making electrode design an important field of research. Here, we review recent trends in electrode engineering with a focus on optimizing complex mass transport phenomena to advance polymer electrolyte fuel cells. We first describe approaches to produce hierarchically organized electrode structures. Then, we discuss methods to control the support morphology, followed by strategies to functionalize the support chemical composition. We then highlight emerging trends in ionomer engineering and conclude with recommendations for standardized testing and the need to assess the end-of-life performance of novel electrode structures.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101053"},"PeriodicalIF":8.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.coche.2024.101052
Arnab Chaudhuri, John van der Schaaf
To transition from the current linear method of chemical manufacturing to a more sustainable and circular approach, a paradigm shift in processing methods is essential. In this perspective article, we explore the potential role of the spinning disc reactor (SDR) in shaping a future industry that relies on modular and distributed production methods. Three key areas are highlighted in particular: utilizing the reactor to intensify thermochemical reactions, the application of the SDR for separation processes, and the integration of alternative activation sources. In addition to reviewing recent advances in the field, we also provide a perspective on the ongoing as well as potential future research and development projects, which may help propel the SDR into a widely adopted industrial unit.
{"title":"Intensified reactors for a paradigm shift in chemical processing: the case for spinning disc reactors","authors":"Arnab Chaudhuri, John van der Schaaf","doi":"10.1016/j.coche.2024.101052","DOIUrl":"10.1016/j.coche.2024.101052","url":null,"abstract":"<div><div>To transition from the current linear method of chemical manufacturing to a more sustainable and circular approach, a paradigm shift in processing methods is essential. In this perspective article, we explore the potential role of the spinning disc reactor (SDR) in shaping a future industry that relies on modular and distributed production methods. Three key areas are highlighted in particular: utilizing the reactor to intensify thermochemical reactions, the application of the SDR for separation processes, and the integration of alternative activation sources. In addition to reviewing recent advances in the field, we also provide a perspective on the ongoing as well as potential future research and development projects, which may help propel the SDR into a widely adopted industrial unit.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101052"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142419492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-28DOI: 10.1016/j.coche.2024.101051
Jayanti Das , Adam C Fisher , Lisa Hughey , Thomas F O’Connor , Vidya Pai , Cinque Soto , John Wan
Big Data technologies are advancing the manufacturing of drug and biological products. Such technologies include innovative software and computational methods for data storage, mining, and analytics. Increasingly vast, complex data sets are being produced by advanced manufacturing processes and sensors for statistical analysis and decision-making. Implementing Big Data technologies, however, can introduce new challenges for organizations in areas of data generation, architecture, and security. Big Data management includes implementing robust storage, complex data integration, and state-of-the-art analysis software. Upholding data integrity and security might require designing a modernized risk-based framework plan for the organization. Once these challenges are successfully addressed, the incorporation of Big Data technologies into pharmaceutical manufacturing is expected to enable more efficient production, lower costs, and greater quality control, resulting in a stronger global pharmaceutical supply chain.
{"title":"Considerations for Big Data management in pharmaceutical manufacturing","authors":"Jayanti Das , Adam C Fisher , Lisa Hughey , Thomas F O’Connor , Vidya Pai , Cinque Soto , John Wan","doi":"10.1016/j.coche.2024.101051","DOIUrl":"10.1016/j.coche.2024.101051","url":null,"abstract":"<div><div>Big Data technologies are advancing the manufacturing of drug and biological products. Such technologies include innovative software and computational methods for data storage, mining, and analytics. Increasingly vast, complex data sets are being produced by advanced manufacturing processes and sensors for statistical analysis and decision-making. Implementing Big Data technologies, however, can introduce new challenges for organizations in areas of data generation, architecture, and security. Big Data management includes implementing robust storage, complex data integration, and state-of-the-art analysis software. Upholding data integrity and security might require designing a modernized risk-based framework plan for the organization. Once these challenges are successfully addressed, the incorporation of Big Data technologies into pharmaceutical manufacturing is expected to enable more efficient production, lower costs, and greater quality control, resulting in a stronger global pharmaceutical supply chain.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101051"},"PeriodicalIF":8.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1016/j.coche.2024.101047
Xiang Zhang , Kai Sundmacher
{"title":"Editorial overview: Model-based process design","authors":"Xiang Zhang , Kai Sundmacher","doi":"10.1016/j.coche.2024.101047","DOIUrl":"10.1016/j.coche.2024.101047","url":null,"abstract":"","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"46 ","pages":"Article 101047"},"PeriodicalIF":8.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1016/j.coche.2024.101046
Shirley Soon Lee Tiang , Liang Ee Low , Israq Ali , Lei Zhou , Bey-Hing Goh , Lai Ti Gew , Siah Ying Tang
Ultrasound remains a remarkable method to form emulsions for food and other applications (e.g. cosmetics and pharmaceuticals) due to its high efficiency, excellent emulsion stability, and cost-effectiveness. Nevertheless, conventional ultrasound equipment suffers from low sonication power or undesired acoustic wave distribution across a sonication medium at large-scale processing, rendering the need for innovative designs to address the aforementioned issues. This mini review aims to discuss the recent developments in designs and configurations of ultrasonic emulsification equipment to overcome these shortcomings. Additionally, patented ultrasonic designs are reviewed to disclose the commercial potential of current ultrasonic inventions. This work can help identify gaps in current ultrasonic inventions, which could inspire researchers on future research directions that could boost the advancements of the design of ultrasound reactors for emulsification to eventual commercialization.
{"title":"Recent advances in ultrasonic cavitation technologies for emulsion preparation: a mini review","authors":"Shirley Soon Lee Tiang , Liang Ee Low , Israq Ali , Lei Zhou , Bey-Hing Goh , Lai Ti Gew , Siah Ying Tang","doi":"10.1016/j.coche.2024.101046","DOIUrl":"10.1016/j.coche.2024.101046","url":null,"abstract":"<div><p>Ultrasound remains a remarkable method to form emulsions for food and other applications (e.g. cosmetics and pharmaceuticals) due to its high efficiency, excellent emulsion stability, and cost-effectiveness. Nevertheless, conventional ultrasound equipment suffers from low sonication power or undesired acoustic wave distribution across a sonication medium at large-scale processing, rendering the need for innovative designs to address the aforementioned issues. This mini review aims to discuss the recent developments in designs and configurations of ultrasonic emulsification equipment to overcome these shortcomings. Additionally, patented ultrasonic designs are reviewed to disclose the commercial potential of current ultrasonic inventions. This work can help identify gaps in current ultrasonic inventions, which could inspire researchers on future research directions that could boost the advancements of the design of ultrasound reactors for emulsification to eventual commercialization.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"45 ","pages":"Article 101046"},"PeriodicalIF":8.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339824000479/pdfft?md5=d2313198abea5397fec95959edb2846f&pid=1-s2.0-S2211339824000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}