Jackknife empirical likelihood confidence intervals for the categorical Gini correlation

Pub Date : 2023-11-20 DOI:10.1016/j.jspi.2023.106123
Sameera Hewage, Yongli Sang
{"title":"Jackknife empirical likelihood confidence intervals for the categorical Gini correlation","authors":"Sameera Hewage,&nbsp;Yongli Sang","doi":"10.1016/j.jspi.2023.106123","DOIUrl":null,"url":null,"abstract":"<div><p>The categorical Gini correlation, <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span>, was proposed by Dang et al. (2021) to measure the dependence between a categorical variable, </span><span><math><mi>Y</mi></math></span>, and a numerical variable, <span><math><mi>X</mi></math></span>. It has been shown that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span>. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.</span></p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375823000927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The categorical Gini correlation, ρg, was proposed by Dang et al. (2021) to measure the dependence between a categorical variable, Y, and a numerical variable, X. It has been shown that ρg has more appealing properties than current existing dependence measurements. In this paper, we develop the jackknife empirical likelihood (JEL) method for ρg. Confidence intervals for the Gini correlation are constructed without estimating the asymptotic variance. Adjusted and weighted JEL are explored to improve the performance of the standard JEL. Simulation studies show that our methods are competitive to existing methods in terms of coverage accuracy and shortness of confidence intervals. The proposed methods are illustrated in an application on two real datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
分类基尼相关的折刀经验似然置信区间
分类基尼相关系数ρg由Dang等人(2021)提出,用于测量分类变量Y与数值变量x之间的相关性。研究表明,与目前现有的相关性测量值相比,ρg具有更吸引人的特性。本文建立了ρg的刀切经验似然(JEL)方法。在不估计渐近方差的情况下构建基尼相关的置信区间。为了提高标准JEL的性能,对调整和加权JEL进行了探索。仿真研究表明,我们的方法在覆盖精度和置信区间短方面与现有方法具有竞争力。在两个实际数据集上的应用说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1