Bacillus-based probiotic cleansers reduce the formation of dry biofilms on common hospital surfaces

IF 3.9 3区 生物学 Q2 MICROBIOLOGY MicrobiologyOpen Pub Date : 2023-11-22 DOI:10.1002/mbo3.1391
Richard Wormald, Paul N. Humphreys, Christopher J. Charles, Simon P. Rout
{"title":"Bacillus-based probiotic cleansers reduce the formation of dry biofilms on common hospital surfaces","authors":"Richard Wormald,&nbsp;Paul N. Humphreys,&nbsp;Christopher J. Charles,&nbsp;Simon P. Rout","doi":"10.1002/mbo3.1391","DOIUrl":null,"url":null,"abstract":"<p>In the absence of liquid suspension, dry biofilms can form upon hard surfaces within a hospital environment, representing a healthcare-associated infection risk. Probiotic cleansers using generally recognized as safe organisms, such as those of the <i>Bacillus</i> genus, represent a potential strategy for the reduction of dry biofilm bioburden. The mechanisms of action and efficacy of these cleaners are, however, poorly understood. To address this, a preventative dry biofilm assay was developed using steel, melamine, and ceramic surfaces to assess the ability of a commercially available <i>Bacillus</i> spp. based probiotic cleanser to reduce the surface bioburden of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. Via this assay, phosphate-buffered saline controls were able to generate dry biofilms within 7 days of incubation, with the application of the probiotic cleanser able to prevent &gt;97.7% of dry biofilm formation across both pathogen analogs and surface types. Further to this, surfaces treated with the probiotic mixture alone also showed a reduction in dry biofilm across both pathogen and surface types. Confocal laser scanning microscopy imaging indicated that the probiotic bacteria were able to germinate and colonize surfaces, likely forming a protective layer upon these hard surfaces.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1391","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the absence of liquid suspension, dry biofilms can form upon hard surfaces within a hospital environment, representing a healthcare-associated infection risk. Probiotic cleansers using generally recognized as safe organisms, such as those of the Bacillus genus, represent a potential strategy for the reduction of dry biofilm bioburden. The mechanisms of action and efficacy of these cleaners are, however, poorly understood. To address this, a preventative dry biofilm assay was developed using steel, melamine, and ceramic surfaces to assess the ability of a commercially available Bacillus spp. based probiotic cleanser to reduce the surface bioburden of Escherichia coli and Staphylococcus aureus. Via this assay, phosphate-buffered saline controls were able to generate dry biofilms within 7 days of incubation, with the application of the probiotic cleanser able to prevent >97.7% of dry biofilm formation across both pathogen analogs and surface types. Further to this, surfaces treated with the probiotic mixture alone also showed a reduction in dry biofilm across both pathogen and surface types. Confocal laser scanning microscopy imaging indicated that the probiotic bacteria were able to germinate and colonize surfaces, likely forming a protective layer upon these hard surfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以芽孢杆菌为基础的益生菌清洁剂减少医院常见表面干燥生物膜的形成
在没有液体悬浮液的情况下,干燥的生物膜可以在医院环境中的坚硬表面上形成,这代表了与医疗保健相关的感染风险。益生菌清洁剂通常使用公认的安全生物,如芽孢杆菌属的生物,代表了减少干生物膜生物负荷的潜在策略。然而,这些清洁剂的作用机制和功效尚不清楚。为了解决这个问题,研究人员使用钢、三聚氰胺和陶瓷表面开发了一种预防性干生物膜试验,以评估市售的基于芽孢杆菌的益生菌清洁剂减少大肠杆菌和金黄色葡萄球菌表面生物负荷的能力。通过该实验,磷酸盐缓冲盐水对照能够在培养7天内产生干生物膜,使用益生菌清洁剂能够防止97.7%的干生物膜在病原体类似物和表面类型中形成。此外,单独使用益生菌混合物处理的表面也显示出病原体和表面类型的干生物膜的减少。共聚焦激光扫描显微镜成像表明,益生菌能够在表面发芽和定植,可能在这些坚硬的表面上形成保护层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
期刊最新文献
Monitoring the Persistence of Pseudomonas sivasensis Strain CF10PS3 in Cereal Fields The Effects of Carbonate on Candida albicans Filamentation, Biofilm Formation, and Antifungal Resistance Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde Evaluation of DNA Extraction Methods for Microbial Community Profiling in Deadwood Decomposition Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1