José Hernández-Valle, Benjamín Vega-Baray, Sebastián Poggio, Laura Camarena
{"title":"CerM and Its Antagonist CerN Are New Components of the Quorum Sensing System in Cereibacter sphaeroides, Signaling to the CckA/ChpT/CtrA System","authors":"José Hernández-Valle, Benjamín Vega-Baray, Sebastián Poggio, Laura Camarena","doi":"10.1002/mbo3.70012","DOIUrl":null,"url":null,"abstract":"<p><i>Cereibacter sphaeroides</i> has a quorum sensing (QS) system that has been partially characterized. Using a bioinformatic approach, six LuxR homologs and one homolog of the acylhomoserine lactone synthase were identified in this bacterium, including the previously characterized CerR and CerI proteins. This study focused on determining the roles of two LuxR homologs, CerM and CerN. CerN lacks the HTH domain and, together with CerM, controls the expression of ctrA, which is part of the TCS CckA/ChpT/CtrA. CtrA is widely conserved in alpha-proteobacteria and regulates flagellar motility and other cellular processes. Genetic and biochemical data suggest that CerM indirectly represses <i>ctrA</i> expression, which is counteracted by its interaction with CerN-AHL. A transcriptomic study identified 181 genes regulated by CerM/CerN, with a conserved sequence in their regulatory regions likely indicating the CerM binding site. This hypothesis was supported by in vitro and in vivo DNA–protein interaction assays. Our results identified a transcription factor that could connect the QS system with the regulation of the two-component system CckA/ChpT/CtrA.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"13 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.70012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cereibacter sphaeroides has a quorum sensing (QS) system that has been partially characterized. Using a bioinformatic approach, six LuxR homologs and one homolog of the acylhomoserine lactone synthase were identified in this bacterium, including the previously characterized CerR and CerI proteins. This study focused on determining the roles of two LuxR homologs, CerM and CerN. CerN lacks the HTH domain and, together with CerM, controls the expression of ctrA, which is part of the TCS CckA/ChpT/CtrA. CtrA is widely conserved in alpha-proteobacteria and regulates flagellar motility and other cellular processes. Genetic and biochemical data suggest that CerM indirectly represses ctrA expression, which is counteracted by its interaction with CerN-AHL. A transcriptomic study identified 181 genes regulated by CerM/CerN, with a conserved sequence in their regulatory regions likely indicating the CerM binding site. This hypothesis was supported by in vitro and in vivo DNA–protein interaction assays. Our results identified a transcription factor that could connect the QS system with the regulation of the two-component system CckA/ChpT/CtrA.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.