{"title":"Impact of gold nanoparticles (AuNPs) on eosinophils isolated from male and female individuals","authors":"Marion Vanharen, Denis Girard","doi":"10.1016/j.imbio.2023.152762","DOIUrl":null,"url":null,"abstract":"<div><p><span>It is well established that some differences exist between the male and female immune systems. Despites this, a sex-based analysis is not frequently performed in most scientific published reports. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle<span> (NP) exposure, we investigate here how in vitro treatment<span> of gold NPs with a primary size of 20 and 70 nm (AuNP</span></span></span><sub>20</sub> and AuNP<sub>70</sub><span>, respectively) will alter the biology of human eosinophils isolated from men and women blood. We found that treatment of AuNP</span><sub>70</sub>, but not AuNP<sub>20</sub><span><span>, significantly delay apoptosis only in eosinophils isolated from women. AuNPs were found to decrease eosinophil </span>phagocytosis, however, significance was only observed in AuNP</span><sub>20</sub>-induced eosinophils isolated from women. The production of IL-8 was significantly increased in response to both AuNPs but only in eosinophils isolated from men and the production of IL-1β was increased in AuNPs-induced eosinophils, although significance was observed only in AuNP<sub>70</sub>-induced eosinophils isolated from women. We conclude that future studies investigating the toxicity of AuNPs (or other NPs) should include a sex-based analysis, especially if the tested NPs have potential medical applications knowing the increased interest in the development of personalized precision medicine.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171298523045643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well established that some differences exist between the male and female immune systems. Despites this, a sex-based analysis is not frequently performed in most scientific published reports. Knowing that inflammation is a common undesired effect observed resulting from nanoparticle (NP) exposure, we investigate here how in vitro treatment of gold NPs with a primary size of 20 and 70 nm (AuNP20 and AuNP70, respectively) will alter the biology of human eosinophils isolated from men and women blood. We found that treatment of AuNP70, but not AuNP20, significantly delay apoptosis only in eosinophils isolated from women. AuNPs were found to decrease eosinophil phagocytosis, however, significance was only observed in AuNP20-induced eosinophils isolated from women. The production of IL-8 was significantly increased in response to both AuNPs but only in eosinophils isolated from men and the production of IL-1β was increased in AuNPs-induced eosinophils, although significance was observed only in AuNP70-induced eosinophils isolated from women. We conclude that future studies investigating the toxicity of AuNPs (or other NPs) should include a sex-based analysis, especially if the tested NPs have potential medical applications knowing the increased interest in the development of personalized precision medicine.