Laboratorial diagnosis of tegumentary leishmaniasis (TL) is hampered by variable sensitivity and/or specificity of the tests, which are still hampered by blood́ invasive collection. In this context, in the present study, we develop a serum- and urine-based ELISA to TL diagnoses. A recombinant protein (rLiHyA), which was previously showed to be antigenic for the disease, as well as a B-cell epitope produced as synthetic peptide and a Leishmania antigenic extract (SLA), were used as antigens. A total of paired 205 urine and serum samples were used, which were comprised by samples from cutaneous (n = 30) and mucosal (n = 30) leishmaniasis patients, as well as from healthy individuals living in endemic region of disease (n = 45), of patients with Chagas disease (n = 30), leprosy (n = 35), malaria (n = 15) or HIV-infected (n = 20). Results showed that serum-based ELISA presented sensitivity of 24.0 %, 100 % and 41.0 %, when SLA, rLiHyA and synthetic peptide were used as antigens, and specificity of 98.4 %, 98.4 % and 98.4 %, respectively. The area under the curve (AUC) was calculated and results were 0.74, 1.0, and 0.71, respectively, when SLA, rLiHyA and synthetic peptide were used as antigens. Performing an urine-based ELISA, sensitivity was 28.0 %, 100 % and 75.0 %, respectively, when SLA, rLiHyA, and synthetic peptide were used, while specificity values were of 98.4 %, 98.4 % and 98.4 %, respectively. In addition, the AUC values were 0.82, 1.0, and 0.94, respectively. A significant drop in specific antibodies levels in both patientś serum and urine samples was found six months after treatment, suggesting a prognostic role of rLiHyA for TL. In conclusion, preliminary data suggest the potential of use patient urine to TL diagnoses.
Tumors constitute a significant health concern for humans, and PD-1 and CTLA-4 monoclonal antibodies have been proven effective in cancer treatment. Some researchers have identified that the combination of PD-1 and CTLA-4 dual blockade demonstrates superior therapeutic efficacy. However, the development of PD-1/CTLA-4 bispecific antibodies faces challenges in terms of both safety and efficacy. The present study discloses a novel PD-1/CTLA-4 bispecific antibody, designated as SH010. Experimental validation through surface plasmon resonance (SPR) confirmed that SH010 exhibits favorable binding activity with both PD-1 and CTLA-4. Flow cytometry analysis demonstrated stable binding of SH010 antibody to CHOK1 cells overexpressing human or cynomolgus monkey PD-1 protein and to 293F cells overexpressing human or cynomolgus monkey CTLA-4 protein. Moreover, it exhibited excellent blocking capabilities in protein binding between human PD-1 and PD-L1, as well as human CTLA-4 and CD80/CD86. Simultaneously, in vitro experiments indicate that SH010 exerts a significant activating effect on hPBMCs. In murine transplant models of human prostate cancer (22RV1) and small cell lung cancer (NCI-H69), administration of varying concentrations of the bispecific antibody significantly inhibits tumor growth. MSD analysis revealed that stimulation of hPBMCs from three different donors with SH010 did not induce the production of cytokine release syndrome. Furthermore, Single or repeated intravenous administrations of SH010 in cynomolgus monkeys show favorable systemic exposure without noticeable drug accumulation or apparent toxicity. In conclusion, SH010 represents a novel cancer therapeutic drug poised to enter clinical trials and obtain market approval.
We previously reported that myeloperoxidase-deficient (MPO-/-) mice develop more severe neutrophil-rich lung inflammation than wild-type mice following intranasal Zymosan administration. Interestingly, we found that these mutant mice with severe lung inflammation also displayed pronounced neutrophilia and anemia, characterized by increased granulopoiesis and decreased erythropoiesis in the bone marrow, compared to wild-type mice. This condition was associated with higher concentrations of granulocyte-colony stimulating factor (G-CSF) in both the lungs and serum, a factor known to enhance granulopoiesis. Neutrophils accumulating in the lungs of MPO-/- mice produced greater amounts of G-CSF than those in wild-type mice, indicating that they are a significant source of G-CSF. In vitro experiments using signal transduction inhibitors and Western blot analysis revealed that MPO-/- neutrophils express higher levels of G-CSF mRNA in response to Zymosan, attributed to the upregulation of the IκB kinase/nuclear factor (NF)-κB pathway and the extracellular-signal-regulated kinase/NF-κB pathway. These findings highlight MPO as a critical regulator of granulopoiesis and erythropoiesis in inflamed tissues.
To investigate the distribution of subpopulations of peripheral blood B lymphocytes in individuals with hepatocellular carcinoma (HCC), and to evaluate the effect of dexmedetomidine (DEX) on B lymphocyte differentiation in patients with HCC in vitro.
Peripheral blood mononuclear cells (PBMCs) were collected from the HCC group and the healthy group, and the distribution of peripheral blood B-lymphocyte subpopulations in the two groups was examined by Flow Cytometry (FCM). B lymphocytes extracted from the peripheral blood of the HCC group were divided into D0, D1, D2 and D4 groups according to the different dose of DEX in the culture medium (0 μM, 1 μM, 2 μM and 4 μM). After 72 h of in vitro culture, FCM was used to detect differences in the percentage of apoptotic B lymphocytes and the percentage of B lymphocytes that can express interleukin 10(IL-10) and transforming growth factor-β (TGF-β) in each group.
In contrast to the healthy group, the HCC group exhibited a statistically significant increase in the proportion of CD19 + CD73 + B lymphocyte subpopulation (P<0.05). In the in vitro culture experiment, the differences in apoptosis of B lymphocytes and the percentage of TGF-β expression in each group were not statistically significant; When compared to the control group, there was a significant increase in the percentage of B lymphocytes expressing IL-10 across the D1, D2, and D4 groups (P<0.05).
The peripheral blood of HCC patients is characterized by an elevated presence of CD19 + CD73 + B lymphocyte subpopulations; DEX may have an immunosuppressive effect by promoting IL-10 secretion from peripheral blood B lymphocytes of HCC patients.
Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1β and oxidative stress. It also significantly activates the MAPKs and NF-κB pathway. Excessive production of pro-inflammatory cytokines is one of the primary characteristic features in the onset and progression of inflammation. Cytokines mainly signal through the JAK/STAT pathway. We hypothesize that blocking of TLR4 along with TNFR1 might be beneficial in suppressing the effects of STAT1/STAT3 due to the stimulation of SOCS3 proteins. Prior to the LPS challenge, the macrophages were treated with antibodies against TLR4 and TNFR1 either individually or in combination. On analysis of the macrophage populations by flowcytometry, it was seen that receptor blockade facilitated the phenotypic shift of the M1 macrophages towards M2 resulting in lowered oxidative stress. Blocking of TLR4/TNFR1 upregulated the SOCS3 and mTOR expressions that enabled the transition of inflammatory M1 macrophages towards the anti-inflammatory M2 phenotype, which might be crucial in curbing the inflammatory responses. Also the reduction in the production of inflammatory cytokines such as IL-6, IL-1β due to the reduction in the activation of the STAT1 and STAT3 molecules was observed in our combination treatment group. All these results indicated that neutralization of both TLR4 and TNFR1 might provide new insights in establishing an alternative therapeutic strategy for LPS-sepsis.
Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Glutamine is a crucial immune cell regulatory factor, and tumor cells exhibit glutamine dependence. In this study, HCC patients were divided into two subtypes (C1 and C2) based on glutamine metabolism-related genes via consensus clustering. The C1 pattern, in contrast to C2, was associated with a lower survival probability among HCC patients. Additionally, the C1 pattern exhibited higher proportions of patients with advanced tumor stages. The activity of C1 in glutamine metabolism and transport is significantly enhanced, while its oxidative phosphorylation activity is reduced. And, C1 was mainly involved in the progression-related pathway of HCC. Furthermore, C1 exhibited high levels of immunosuppressive cells, cytokine-receptor interactions and immune checkpoint genes, suggesting C1 as an immunosuppressive subtype. After stepwise selection based on integrated four machine learning methods, SLC1A5 was finally identified as the pivotal gene that distinguishes the subtypes. The expression of SLC1A5 was significantly positively correlated with immunosuppressive status. SLC1A5 showed the most significant correlation with macrophage infiltration, and this correlation was confirmed through the RNA-seq data of CLCA project and our cohort. Low-SLC1A5-expression samples had better immunogenicity and responsiveness to immunotherapy. As expected, SubMap and survival analysis indicated that individuals with low SLC1A5 expression were more responsive to anti-PD1 therapy. Collectively, this study categorized HCC patients based on glutamine metabolism-related genes and proposed two subclasses with different clinical traits, biological behavior, and immune status. Machine learning was utilized to identify the hub gene SLC1A5 for HCC classification, which also could predict immunotherapy response.