Thomas Lesigne, Francois Ravetta, Aurélien Podglajen, Vincent Mariage, Jacques Pelon
{"title":"Observations of Tropical Tropopause Layer clouds from a balloon-borne lidar","authors":"Thomas Lesigne, Francois Ravetta, Aurélien Podglajen, Vincent Mariage, Jacques Pelon","doi":"10.5194/egusphere-2023-2763","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Tropical Tropopause Layer (TTL) clouds have a significant impact on the Earth’s radiative budget and regulate the amount of water vapor entering the stratosphere. During the Strateole-2 observation campaign, three microlidars were flown onboard stratospheric superpressure balloons from October 2021 to late January 2022, slowly drifting only a few kilometers above the TTL. These measurements have unprecedented sensitivity to thin cirrus and provide a fine-scale description of cloudy structures both in time and space. Case studies of collocated observations with the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) show a very good agreement between the instruments and highlight the unique ability of the microlidar to detect optically very thin clouds below CALIOP detection capacity (optical depth τ < 2 · 10<sup>−3</sup>). Statistics on cloud occurrence show that TTL cirrus appear in more than 50 % of the microlidar profiles and have a mean geometrical depth of 1 km. Ultrathin TTL cirrus (τ < 2 · 10<sup>−3</sup>) have a significant coverage (16 % of the profiles) and their mean geometrical depth is below 500 m.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"5 7","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2023-2763","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Tropical Tropopause Layer (TTL) clouds have a significant impact on the Earth’s radiative budget and regulate the amount of water vapor entering the stratosphere. During the Strateole-2 observation campaign, three microlidars were flown onboard stratospheric superpressure balloons from October 2021 to late January 2022, slowly drifting only a few kilometers above the TTL. These measurements have unprecedented sensitivity to thin cirrus and provide a fine-scale description of cloudy structures both in time and space. Case studies of collocated observations with the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) show a very good agreement between the instruments and highlight the unique ability of the microlidar to detect optically very thin clouds below CALIOP detection capacity (optical depth τ < 2 · 10−3). Statistics on cloud occurrence show that TTL cirrus appear in more than 50 % of the microlidar profiles and have a mean geometrical depth of 1 km. Ultrathin TTL cirrus (τ < 2 · 10−3) have a significant coverage (16 % of the profiles) and their mean geometrical depth is below 500 m.
期刊介绍:
Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere.
The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.