{"title":"The reaction characteristics and mechanism of polymer non-catalytic reduction (PNCR) for NOx removal","authors":"Chuanqiang Zhu , Changming Li , Zhongcheng Zhao , Shiqiu Gao","doi":"10.1016/j.fuproc.2023.108002","DOIUrl":null,"url":null,"abstract":"<div><p>To overcome the defects of the traditional selective non-catalytic reduction (SNCR) process (e.g., low efficiency, narrow temperature range), a new modified SNCR technology based on the solid complex polymer reducing agents, also called polymer non-catalytic reduction (PNCR), was investigated both in the laboratory and pilot scale to reveal its reaction characteristics and mechanism. The PNCR process demonstrates excellent removal efficiency (about 90%) of NO in furnace in the wide temperature range (850–1150 °C), and possesses promising application feasibility with an average NO<sub><em>x</em></sub> emission concentration of 68.72 mg·m<sup>−3</sup> even on unstable industrial operating conditions. The NO removal behaviors influenced by O<sub>2</sub>, temperature, or water steam illuminate the unique O<sub>2</sub>-independent and H<sub>2</sub>O-promoted reaction characteristics of PNCR in the wide temperature range. The thermogravimetric infrared spectra/mass spectrometry (TG-IR/MS) results further reveal a pyrolysis-assisted formation mechanism of active NH<sub>2</sub><span>/NH free radicals without the requirement of O</span><sub>2</sub><span> and high temperature, which avoids the overoxidation of active radicals and accounts for the wide denitrification temperature window, low oxygen compliance and high denitrification efficiency of PNCR process. The excellent NO removal performance as well as the unique reaction characteristics/mechanism of PNCR forebode its broad industrial application prospect in the field of flue gas cleaning.</span></p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"252 ","pages":"Article 108002"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023003508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the defects of the traditional selective non-catalytic reduction (SNCR) process (e.g., low efficiency, narrow temperature range), a new modified SNCR technology based on the solid complex polymer reducing agents, also called polymer non-catalytic reduction (PNCR), was investigated both in the laboratory and pilot scale to reveal its reaction characteristics and mechanism. The PNCR process demonstrates excellent removal efficiency (about 90%) of NO in furnace in the wide temperature range (850–1150 °C), and possesses promising application feasibility with an average NOx emission concentration of 68.72 mg·m−3 even on unstable industrial operating conditions. The NO removal behaviors influenced by O2, temperature, or water steam illuminate the unique O2-independent and H2O-promoted reaction characteristics of PNCR in the wide temperature range. The thermogravimetric infrared spectra/mass spectrometry (TG-IR/MS) results further reveal a pyrolysis-assisted formation mechanism of active NH2/NH free radicals without the requirement of O2 and high temperature, which avoids the overoxidation of active radicals and accounts for the wide denitrification temperature window, low oxygen compliance and high denitrification efficiency of PNCR process. The excellent NO removal performance as well as the unique reaction characteristics/mechanism of PNCR forebode its broad industrial application prospect in the field of flue gas cleaning.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.