Discovery, synthesis, activities, structure–activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review†‡

IF 10.2 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Natural Product Reports Pub Date : 2024-02-21 DOI:10.1039/d3np00053b
Sheo B. Singh
{"title":"Discovery, synthesis, activities, structure–activity relationships, and clinical development of combretastatins and analogs as anticancer drugs. A comprehensive review†‡","authors":"Sheo B. Singh","doi":"10.1039/d3np00053b","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: 1982 to up to the end of 2022</p></div><div><p>Bioassay guided purification of the extracts of <em>Combretum caffrum</em> led to the discovery of six series of combretastatins A–D with cytotoxic activities ranging from sub nM to &gt;50 μM ED<sub>50</sub>'s against a wide variety of cancer cell lines. Of these, <em>cis</em>-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting <em>in vivo</em> efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved <em>in vitro</em> and <em>in vivo</em> potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A–D, including bioassay guided discovery, total syntheses, and structure–activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.</p></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":null,"pages":null},"PeriodicalIF":10.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000096","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Covering: 1982 to up to the end of 2022

Bioassay guided purification of the extracts of Combretum caffrum led to the discovery of six series of combretastatins A–D with cytotoxic activities ranging from sub nM to >50 μM ED50's against a wide variety of cancer cell lines. Of these, cis-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting in vivo efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved in vitro and in vivo potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A–D, including bioassay guided discovery, total syntheses, and structure–activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗癌药物的发现、合成、活性、构效关系及临床发展。全面审查。
覆盖:1982年至2022年底,对Combretum caffrum提取物进行了生物测定指导纯化,发现了6个系列的combretastatins a - d,对多种癌细胞的细胞毒活性范围从亚nM到>50 μM ED50。其中,顺式二苯乙烯化合物a -4和a -1是最有效的,在小鼠模型中显示出对多种肿瘤类型的体内功效。这些抗有丝分裂药物通过与秋水仙碱结合位点的可逆结合抑制微管蛋白聚合。它们通过一种新的抗血管和抗肿瘤发生机制抑制肿瘤生长,其中它们阻止血液流向血管导致坏死。在20多项临床试验中,磷酸前药combretastatin A-4 (CA4P)和A-1 (CA1P)对许多肿瘤类型显示出客观稳定的疗效,增加了许多患者的生存时间,并证实了某些间变性甲状腺癌患者的治愈。药物化学方面的努力导致了三种新的先导物(AVE8062, BNC105P, SCB01A)的鉴定,它们的体外和体内效力都得到了改善,细胞谱也得到了改善。不幸的是,这些临床前的改善并没有以任何有意义的方式转化为临床。客观地说,CA4P仍然是最好的化合物,并获得了许多FDA的孤儿药指定。肿瘤基因定位的临床试验,特别是来自先前应答者的临床试验,可能有助于促进这些化合物在未来研究中的成功。全面回顾了combretastatin系列A- d,包括生物测定指导下的发现,全合成,结构-活性关系(SAR)研究,生物学和机制研究,以及分离的combretastatin和类似物的临床前和临床评估,以及发起该项目的作者的个人观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
期刊最新文献
Hot off the Press. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids. Isolation, biological activity, and synthesis of isoquinoline alkaloids. Exploring nature's battlefield: organismic interactions in the discovery of bioactive natural products. Chemical case studies from natural products of recent interest in the crop protection industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1