Romain M M François, Jean-Malo Massicard, Kira J Weissman
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
多年来,复杂多酮化合物的价值在于其医疗特性,包括抗生素和抗真菌活性,而很少考虑其本地功能。然而,最近从生物体间相互作用研究中收集到的证据显示,这些代谢物对宿主的生态适应性和分布,以及它们的交流模式都有影响。基因组和相关转录组测序数量的不断增加也揭示了底层生物合成酶广泛存在于生命的各个领域,以及它们对每种生物特有的生理事件的重要贡献。本综述描绘了 I 型多酮类化合物所发挥的多种作用,特别是根据过去十年中开展的研究,对它们的各种功能进行了初步的整体描述。
{"title":"The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture.","authors":"Romain M M François, Jean-Malo Massicard, Kira J Weissman","doi":"10.1039/d4np00046c","DOIUrl":"10.1039/d4np00046c","url":null,"abstract":"<p><p>Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering: up to 2024Fungal pathogens are a major threat to public health, with emerging resistance to all three classes of antifungals that are currently available and increased incidence of invasive fungal infections among hospitalized patients. Ibrexafungerp is a semi-synthetic analog of enfumafungin and the first antifungal agent approved in more than 20 years since the launch of caspofungin, the first of echinocandins. This new drug approval was made possible after a long arduous journey lasting 25 years by dedicated and talented medicinal chemists from two companies that undertook tedious atom-by-atom chemical modification of the natural product enfumafungin, a glycosylated fernane-type triterpenoid isolated from the fungus Hormonema carpetanum. This highlight will cover the discovery of enfumafungin, its biosynthesis and the characterisation of its antifungal profile and mode of action that led to the development of ibrexafungerp. We will discuss the challenges encountered during this long preclinical program and the clinical trial validation of this first-in-class oral antifungal approved to treat vulvovaginal candidiasis with an enormous therapeutic potential to treat future major threatening drug-resistant fungal pathogens.
{"title":"Fungerps: discovery of the glucan synthase inhibitor enfumafungin and development of a new class of antifungal triterpene glycosides.","authors":"Francisca Vicente, Fernando Reyes, Olga Genilloud","doi":"10.1039/d4np00044g","DOIUrl":"https://doi.org/10.1039/d4np00044g","url":null,"abstract":"<p><p>Covering: up to 2024Fungal pathogens are a major threat to public health, with emerging resistance to all three classes of antifungals that are currently available and increased incidence of invasive fungal infections among hospitalized patients. Ibrexafungerp is a semi-synthetic analog of enfumafungin and the first antifungal agent approved in more than 20 years since the launch of caspofungin, the first of echinocandins. This new drug approval was made possible after a long arduous journey lasting 25 years by dedicated and talented medicinal chemists from two companies that undertook tedious atom-by-atom chemical modification of the natural product enfumafungin, a glycosylated fernane-type triterpenoid isolated from the fungus <i>Hormonema carpetanum</i>. This highlight will cover the discovery of enfumafungin, its biosynthesis and the characterisation of its antifungal profile and mode of action that led to the development of ibrexafungerp. We will discuss the challenges encountered during this long preclinical program and the clinical trial validation of this first-in-class oral antifungal approved to treat vulvovaginal candidiasis with an enormous therapeutic potential to treat future major threatening drug-resistant fungal pathogens.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susanne M Germann, Maxence Holtz, Michael Krogh Jensen, Carlos G Acevedo-Rocha
Covering: 2016 to the end of 2024This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.
{"title":"Debottlenecking cytochrome P450-dependent metabolic pathways for the biosynthesis of commercial natural products.","authors":"Susanne M Germann, Maxence Holtz, Michael Krogh Jensen, Carlos G Acevedo-Rocha","doi":"10.1039/d4np00027g","DOIUrl":"https://doi.org/10.1039/d4np00027g","url":null,"abstract":"<p><p>Covering: 2016 to the end of 2024This highlight article aims to provide a perspective on the challenges that novel biotechnological processes face in the biomanufacturing of natural products (NPs) whose biosynthesis pathways rely on cytochrome P450 monooxygenases. This enzyme superfamily is one of the most versatile in the biosynthesis of a plethora of NPs finding use across the food, nutrition, medicine, chemical and cosmetics industries. These enzymes often exhibit excellent regio- and stereoselectivity, but they can suffer from low activity and instability, which are serious issues impairing the development of high performing bioprocesses. We start with a brief introduction to industrial biotechnology and the importance of looking for alternative means for producing NPs independently from unsustainable fossil fuels or plant extractions. We then discuss the challenges and implemented solutions during the development of commercial NP processes focusing on the P450-dependent steps primarily in yeast cell factories. Our main focus is to highlight the challenges often encountered when utilizing P450-dependent NP pathways, and how protein engineering can be used for debottlenecking them. Finally, we briefly touch upon the importance of artificial intelligence and machine learning for guiding engineering efforts.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
{"title":"Human microbiota peptides: important roles in human health.","authors":"Abdul Bari Shah, Sang Hee Shim","doi":"10.1039/d4np00042k","DOIUrl":"10.1039/d4np00042k","url":null,"abstract":"<p><p>Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Márcio B Weiss, Ricardo M Borges, Peter Sullivan, João P B Domingues, Francisco H S da Silva, Victória G S Trindade, Shangwen Luo, Jimmy Orjala, Camila M Crnkovic
Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.
{"title":"Chemical diversity of cyanobacterial natural products.","authors":"Márcio B Weiss, Ricardo M Borges, Peter Sullivan, João P B Domingues, Francisco H S da Silva, Victória G S Trindade, Shangwen Luo, Jimmy Orjala, Camila M Crnkovic","doi":"10.1039/d4np00040d","DOIUrl":"https://doi.org/10.1039/d4np00040d","url":null,"abstract":"<p><p>Covering: 2010 to 2023Cyanobacterial natural products are a diverse group of molecules with promising biotechnological applications. This review examines the chemical diversity of 995 cyanobacterial metabolites reported from 2010 to 2023. A computational analysis using similarity networking was applied to visualize the chemical space and to compare the diversity of cyanobacterial metabolites among taxonomic orders and environmental sources. Key examples are highlighted, detailing their sources, biological activities, and discovery processes.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Covering up to September 2024Collembola, commonly known as springtails, are abundant and important members of soil ecosystems. Due to their small size and hidden life, not much is known about their secondary metabolites. This chemistry is remarkably different from that of insects, with which they share a common ancestor, although they diverged already around 450 mya. Here we describe what is known so far, mainly compounds for chemical defence and cuticular lipids, as well as chemical signals. The uniqueness of the structures found is striking, many of which are not known from other natural sources. These include polychlorinated benzopyranones, small alkaloids, hetero-substituted aromatic compounds, and a diverse terpene chemistry, including highly branched compounds.
{"title":"Small animals with unique chemistry - the natural product chemistry of Collembola.","authors":"Anton Möllerke, Stefan Schulz","doi":"10.1039/d4np00049h","DOIUrl":"https://doi.org/10.1039/d4np00049h","url":null,"abstract":"<p><p>Covering up to September 2024Collembola, commonly known as springtails, are abundant and important members of soil ecosystems. Due to their small size and hidden life, not much is known about their secondary metabolites. This chemistry is remarkably different from that of insects, with which they share a common ancestor, although they diverged already around 450 mya. Here we describe what is known so far, mainly compounds for chemical defence and cuticular lipids, as well as chemical signals. The uniqueness of the structures found is striking, many of which are not known from other natural sources. These include polychlorinated benzopyranones, small alkaloids, hetero-substituted aromatic compounds, and a diverse terpene chemistry, including highly branched compounds.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as clavirolide L from Clavularia viridis.
{"title":"Hot off the press","authors":"Robert A. Hill and Andrew Sutherland","doi":"10.1039/D3NP90037A","DOIUrl":"https://doi.org/10.1039/D3NP90037A","url":null,"abstract":"<p >A personal selection of 32 recent papers is presented, covering various aspects of current developments in bioorganic chemistry and novel natural products, such as clavirolide L from <em>Clavularia viridis</em>.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" 8","pages":" 1298-1302"},"PeriodicalIF":11.9,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3812196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keighley N. Reisenauer, Jaquelin Aroujo, Yongfeng Tao, Santhalakshmi Ranganathan, Daniel Romo and Joseph H. Taube
Covering: 1995 to 2022
Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure–activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
{"title":"Therapeutic vulnerabilities of cancer stem cells and effects of natural products","authors":"Keighley N. Reisenauer, Jaquelin Aroujo, Yongfeng Tao, Santhalakshmi Ranganathan, Daniel Romo and Joseph H. Taube","doi":"10.1039/D3NP00002H","DOIUrl":"https://doi.org/10.1039/D3NP00002H","url":null,"abstract":"<p>Covering: 1995 to 2022</p><p>Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure–activity relationships, derivatization, and effects of six natural products with anti-CSC activity.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" 8","pages":" 1432-1456"},"PeriodicalIF":11.9,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3799730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.
{"title":"Finding activity through rigidity: syntheses of natural products containing tricyclic bridgehead carbon centers","authors":"Zhi Xu, Xin Li, John A. Rose and Seth B. Herzon","doi":"10.1039/D3NP00008G","DOIUrl":"https://doi.org/10.1039/D3NP00008G","url":null,"abstract":"<p>Covering: up to 2022</p><p>Tricyclic bridgehead carbon centers (TBCCs) are a synthetically challenging substructure found in many complex natural products. Here we review the syntheses of ten representative families of TBCC-containing isolates, with the goal of outlining the strategies and tactics used to install these centers, including a discussion of the evolution of the successful synthetic design. We provide a summary of common strategies to inform future synthetic endeavors.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" 8","pages":" 1393-1431"},"PeriodicalIF":11.9,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/np/d3np00008g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3799729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A graphical abstract is available for this content
此内容的图形摘要可用
{"title":"Introduction to volatile natural products","authors":"Stefan Schulz","doi":"10.1039/D3NP90015K","DOIUrl":"https://doi.org/10.1039/D3NP90015K","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" 4","pages":" 759-760"},"PeriodicalIF":11.9,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3896250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}