Effect of data harmonization of multicentric dataset in ASD/TD classification.

Q1 Computer Science Brain Informatics Pub Date : 2023-11-25 DOI:10.1186/s40708-023-00210-x
Giacomo Serra, Francesca Mainas, Bruno Golosio, Alessandra Retico, Piernicola Oliva
{"title":"Effect of data harmonization of multicentric dataset in ASD/TD classification.","authors":"Giacomo Serra, Francesca Mainas, Bruno Golosio, Alessandra Retico, Piernicola Oliva","doi":"10.1186/s40708-023-00210-x","DOIUrl":null,"url":null,"abstract":"<p><p>Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"32"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10676338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00210-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多中心数据协调在ASD/TD分类中的作用。
如今,机器学习(ML)是分析磁共振成像(MRI)数据的重要工具,特别是在识别神经和神经发育障碍的大脑相关性方面。机器学习需要适当大小的数据集进行训练,在神经影像学中,这些数据集通常是从多个采集中心收集数据获得的。然而,分析大型多中心数据集可能会由于采集中心之间的差异而引入偏差。战斗协调通常用于解决批处理效应,但当使用整个数据集来估计模型参数时,它可能导致数据泄漏。在这项研究中,来自自闭症脑成像数据交换(ABIDE)收集的结构和功能MRI数据被用于将自闭症谱系障碍(ASD)受试者与典型发育对照组(TD)进行分类。我们比较了经典方法(外部协调),其中在训练/测试分裂之前执行协调,仅在训练集上计算协调(内部协调),以及没有协调的数据集。结果表明,使用整个数据集的协调可以获得更高的识别性能,而非协调数据和仅使用训练集的协调在结构和连通性特征上都表现出相似的结果。我们还表明,外部协调的更高性能不是由于模型估计的样本规模更大,因此整个数据集的这些改进性能可能归因于数据泄漏。为了防止这种泄漏,建议单独使用列车集来定义协调模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1