A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG).
Javed Alam, Mohammad Firoz Khan, Meraj Alam Khan, Rinky Singh, Mohammed Mundazeer, Pramod Kumar
{"title":"A Systematic Approach Focused on Machine Learning Models for Exploring the Landscape of Physiological Measurement and Estimation Using Photoplethysmography (PPG).","authors":"Javed Alam, Mohammad Firoz Khan, Meraj Alam Khan, Rinky Singh, Mohammed Mundazeer, Pramod Kumar","doi":"10.1007/s12265-023-10462-x","DOIUrl":null,"url":null,"abstract":"<p><p>A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"669-684"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12265-023-10462-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A non-invasive optical technique known as photoplethysmography (PPG) can be used to provide various physiological measurements and estimations. PPG can be used to assess cardiovascular disease (CVD). Hypertension is a primary risk factor for CVD and a major health problem worldwide. PPG is popular because of its important applications in the evaluation of cardiac activity, variations in venous blood volume, blood oxygen saturation, blood pressure and heart rate variability, etc. In this study, we provide a comprehensive analysis of the extraction of various physiological parameters using PPG waveforms. In addition, we focused on the role of machine learning (ML) models used for the estimation of blood pressure and hypertension classification based on PPG waveforms to make future research and innovation recommendations. This study will be helpful for researchers, scientists, and medical practitioners working on PPG waveforms for monitoring, screening, and diagnosis, as a comparative study or reference.
期刊介绍:
Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research.
JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials.
JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.