A Gene Selection Method Considering Measurement Errors.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-01-01 Epub Date: 2023-11-21 DOI:10.1089/cmb.2023.0041
Hajoung Lee, Jaejik Kim
{"title":"A Gene Selection Method Considering Measurement Errors.","authors":"Hajoung Lee, Jaejik Kim","doi":"10.1089/cmb.2023.0041","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"71-82"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of gene expression data has made significant contributions to understanding disease mechanisms and developing new drugs and therapies. In such analysis, gene selection is often required for identifying informative and relevant genes and removing redundant and irrelevant ones. However, this is not an easy task as gene expression data have inherent challenges such as ultra-high dimensionality, biological noise, and measurement errors. This study focuses on the measurement errors in gene selection problems. Typically, high-throughput experiments have their own intrinsic measurement errors, which can result in an increase of falsely discovered genes. To alleviate this problem, this study proposes a gene selection method that takes into account measurement errors using generalized liner measurement error models. The method consists of iterative filtering and selection steps until convergence, leading to fewer false positives and providing stable results under measurement errors. The performance of the proposed method is demonstrated through simulation studies and applied to a lung cancer data set.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑测量误差的基因选择方法。
基因表达数据的分析对了解疾病机制和开发新的药物和治疗方法做出了重大贡献。在这种分析中,通常需要基因选择来识别信息丰富和相关的基因,并去除冗余和不相关的基因。然而,这并不是一项容易的任务,因为基因表达数据具有固有的挑战,如超高维度、生物噪声和测量误差。本文主要研究基因选择问题中的测量误差。通常,高通量实验有其固有的测量误差,这可能导致错误发现基因的增加。为了缓解这一问题,本研究提出了一种利用广义线性测量误差模型考虑测量误差的基因选择方法。该方法由迭代滤波和选择步骤组成,直到收敛,导致假阳性较少,并且在测量误差下提供稳定的结果。通过仿真研究证明了该方法的有效性,并将其应用于肺癌数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1