Precision genetics tools for genetic improvement of banana.

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY Plant Genome Pub Date : 2024-06-01 Epub Date: 2023-11-27 DOI:10.1002/tpg2.20416
Jaindra Nath Tripathi, Valentine Otang Ntui, Leena Tripathi
{"title":"Precision genetics tools for genetic improvement of banana.","authors":"Jaindra Nath Tripathi, Valentine Otang Ntui, Leena Tripathi","doi":"10.1002/tpg2.20416","DOIUrl":null,"url":null,"abstract":"<p><p>Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20416"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20416","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Banana is an important food security crop for millions of people in the tropics but it faces challenges from diseases and pests. Traditional breeding methods have limitations, prompting the exploration of precision genetic tools like genetic modification and genome editing. Extensive efforts using transgenic approaches have been made to develop improved banana varieties with resistance to banana Xanthomonas wilt, Fusarium wilt, and nematodes. However, these efforts should be extended for other pests, diseases, and abiotic stresses. The commercialization of transgenic crops still faces continuous challenges with regulatory and public acceptance. Genome editing, particularly CRISPR/Cas, offers precise modifications to the banana genome and has been successfully applied in the improvement of banana. Targeting specific genes can contribute to the development of improved banana varieties with enhanced resistance to various biotic and abiotic constraints. This review discusses recent advances in banana improvement achieved through genetic modification and genome editing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
香蕉遗传改良的精密遗传工具。
香蕉是热带地区数百万人重要的粮食保障作物,但它面临着病虫害的挑战。传统的育种方法存在局限性,促使人们探索基因修饰和基因组编辑等精密遗传工具。利用转基因方法开发具有抗黄单胞菌、枯萎病和线虫的改良香蕉品种已经取得了广泛的成果。然而,这些努力应该扩展到其他病虫害和非生物胁迫。转基因作物的商业化仍然面临监管和公众接受的持续挑战。基因组编辑技术,特别是CRISPR/Cas,为香蕉基因组提供了精确的修改,并已成功应用于香蕉的改良。针对特定基因可以促进香蕉品种的改良,增强对各种生物和非生物限制的抗性。本文综述了通过基因修饰和基因组编辑在香蕉改良方面取得的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
期刊最新文献
Soybean genomics research community strategic plan: A vision for 2024-2028. Enhancing prediction accuracy of grain yield in wheat lines adapted to the southeastern United States through multivariate and multi-environment genomic prediction models incorporating spectral and thermal information. Genome-wide association of an organic naked barley diversity panel identified quantitative trait loci for disease resistance. Association mapping and genomic prediction for processing and end-use quality traits in wheat (Triticum aestivum L.). Characterization of a new barley greenbug resistance gene Rsg4 in the Chinese landrace CI 2458.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1