Exploiting historical agronomic data to develop genomic prediction strategies for early clonal selection in the Louisiana sugarcane variety development program.
Dipendra Shahi, James Todd, Kenneth Gravois, Anna Hale, Brayden Blanchard, Collins Kimbeng, Michael Pontif, Niranjan Baisakh
{"title":"Exploiting historical agronomic data to develop genomic prediction strategies for early clonal selection in the Louisiana sugarcane variety development program.","authors":"Dipendra Shahi, James Todd, Kenneth Gravois, Anna Hale, Brayden Blanchard, Collins Kimbeng, Michael Pontif, Niranjan Baisakh","doi":"10.1002/tpg2.20545","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection can enhance the rate of genetic gain of cane and sucrose yield in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS), number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22 statistical models based on the genomic estimated breeding values of 567 genotypes within and across five stages of the Louisiana sugarcane breeding program. TRS and SW with high heritability showed higher PA compared to other traits, while NS had the lowest. Machine learning (ML) methods, such as random forest and support vector machine (SVM), outperformed others in predicting traits with low heritability. ML methods predicted TRS and SY with the highest accuracy in cross-stage predictions, while Bayesian models predicted NS and CY with the highest accuracy. Extended genomic best linear unbiased prediction models accounting for dominance and epistasis effects showed a slight improvement in PA for a few traits. When both NS and TRS, which can be available as early as stage 2, were considered in a multi-trait selection model, the PA for SY in stage 5 could increase up to 0.66 compared to 0.30 with a single-trait model. Marker density assessment suggested 9091 SNPs were sufficient for optimal PA of all traits. The study demonstrated the potential of using historical data to devise genomic prediction strategies for clonal selection early in sugarcane breeding programs.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e20545"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20545","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic selection can enhance the rate of genetic gain of cane and sucrose yield in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS), number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22 statistical models based on the genomic estimated breeding values of 567 genotypes within and across five stages of the Louisiana sugarcane breeding program. TRS and SW with high heritability showed higher PA compared to other traits, while NS had the lowest. Machine learning (ML) methods, such as random forest and support vector machine (SVM), outperformed others in predicting traits with low heritability. ML methods predicted TRS and SY with the highest accuracy in cross-stage predictions, while Bayesian models predicted NS and CY with the highest accuracy. Extended genomic best linear unbiased prediction models accounting for dominance and epistasis effects showed a slight improvement in PA for a few traits. When both NS and TRS, which can be available as early as stage 2, were considered in a multi-trait selection model, the PA for SY in stage 5 could increase up to 0.66 compared to 0.30 with a single-trait model. Marker density assessment suggested 9091 SNPs were sufficient for optimal PA of all traits. The study demonstrated the potential of using historical data to devise genomic prediction strategies for clonal selection early in sugarcane breeding programs.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.