Machine learning and robot-assisted synthesis of diverse gold nanorods via seedless approach

Oyawale Adetunji Moses , Mukhtar Lawan Adam , Zijian Chen , Collins Izuchukwu Ezeh , Hao Huang , Zhuo Wang , Zixuan Wang , Boyuan Wang , Wentao Li , Chensu Wang , Zongyou Yin , Yang Lu , Xue-Feng Yu , Haitao Zhao
{"title":"Machine learning and robot-assisted synthesis of diverse gold nanorods via seedless approach","authors":"Oyawale Adetunji Moses ,&nbsp;Mukhtar Lawan Adam ,&nbsp;Zijian Chen ,&nbsp;Collins Izuchukwu Ezeh ,&nbsp;Hao Huang ,&nbsp;Zhuo Wang ,&nbsp;Zixuan Wang ,&nbsp;Boyuan Wang ,&nbsp;Wentao Li ,&nbsp;Chensu Wang ,&nbsp;Zongyou Yin ,&nbsp;Yang Lu ,&nbsp;Xue-Feng Yu ,&nbsp;Haitao Zhao","doi":"10.1016/j.aichem.2023.100028","DOIUrl":null,"url":null,"abstract":"<div><p>The challenge of data-driven synthesis of advanced nanomaterials can be minimized by using machine learning algorithms to optimize synthesis parameters and expedite the innovation process. In this study, a high-throughput robotic platform was employed to synthesize over 1356 gold nanorods with varying aspect ratios via a seedless approach. The developed models guided us in synthesizing gold nanorods with customized morphology, resulting in highly repeatable morphological yield with quantifiable structure-modulating precursor adjustments. The study provides insight into the dynamic relationships between key structure-modulating precursors and the structural morphology of gold nanorods based on the expected aspect ratio. The high-throughput robotic platform-fabricated gold nanorods demonstrated precise aspect ratio control when spectrophotometrically investigated and further validated with the transmission electron microscopy characterization. These findings demonstrate the potential of high-throughput robot-assisted synthesis and machine learning in the synthesis optimization of gold nanorods and aided in the development of models that can aid such synthesis of as-desired gold nanorods.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"1 2","pages":"Article 100028"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747723000283/pdfft?md5=8511642b616c7b56dec42d00c89c3ede&pid=1-s2.0-S2949747723000283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747723000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of data-driven synthesis of advanced nanomaterials can be minimized by using machine learning algorithms to optimize synthesis parameters and expedite the innovation process. In this study, a high-throughput robotic platform was employed to synthesize over 1356 gold nanorods with varying aspect ratios via a seedless approach. The developed models guided us in synthesizing gold nanorods with customized morphology, resulting in highly repeatable morphological yield with quantifiable structure-modulating precursor adjustments. The study provides insight into the dynamic relationships between key structure-modulating precursors and the structural morphology of gold nanorods based on the expected aspect ratio. The high-throughput robotic platform-fabricated gold nanorods demonstrated precise aspect ratio control when spectrophotometrically investigated and further validated with the transmission electron microscopy characterization. These findings demonstrate the potential of high-throughput robot-assisted synthesis and machine learning in the synthesis optimization of gold nanorods and aided in the development of models that can aid such synthesis of as-desired gold nanorods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习和机器人辅助合成各种金纳米棒的无籽方法
通过使用机器学习算法优化合成参数并加快创新过程,可以最大限度地减少数据驱动合成先进纳米材料的挑战。在这项研究中,采用高通量机器人平台通过无籽方法合成了超过1356个不同宽高比的金纳米棒。开发的模型指导我们合成具有定制形态的金纳米棒,通过可量化的结构调制前驱体调整,产生高度可重复的形态产率。该研究提供了基于预期宽高比的关键结构调节前驱体与金纳米棒结构形态之间的动态关系。高通量机器人平台制造的金纳米棒在分光光度研究和透射电镜表征中显示出精确的纵横比控制。这些发现证明了高通量机器人辅助合成和机器学习在金纳米棒合成优化中的潜力,并有助于开发有助于合成所需金纳米棒的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation Machine learning for active sites prediction of quinoline derivatives Machine learning approaches for modelling of molecular polarizability in gold nanoclusters Evaluation of machine learning models for the accelerated prediction of density functional theory calculated 19F chemical shifts based on local atomic environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1