AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets

Natalia V. Karimova , Ravithree D. Senanayake
{"title":"AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets","authors":"Natalia V. Karimova ,&nbsp;Ravithree D. Senanayake","doi":"10.1016/j.aichem.2025.100084","DOIUrl":null,"url":null,"abstract":"<div><div>Toxoplasmosis, caused by <em>Toxoplasma gondii</em> (<em>T. gondii</em>), is a serious global health concern, particularly in immunocompromised individuals. Inhibiting the enzyme TgDHFR is a promising strategy for developing treatments. This Artificial Intelligence (AI)-driven Quantitative Structure-Activity Relationship (QSAR) study applies deep neural networks (DNNs) to predict pIC<sub>50</sub> values for potential inhibitors, using 2D and 3D molecular descriptors and fingerprints. To address training data limitations, we introduced a novel methodology combining targeted descriptor selection, Gaussian noise-based data augmentation, and an ensemble of DNNs. This approach significantly enhanced model performance, increasing the R² from 0.75 with the original dataset to 0.85. The model was further validated using two FDA-approved drugs for <em>T. gondii</em> treatment—pyrimethamine and trimethoprim—yielding relative errors of 3.35 % and 2.15 % in pIC<sub>50</sub> predictions compared to experimental values. Finally, the model was applied to screen FDA-approved drugs after filtering out molecules that did not align with the characteristics of the training dataset. The predicted pIC<sub>50</sub> values were further used to calculate ligand efficiency (LE), binding efficiency index (BEI), lipophilic ligand efficiency (LLE), and surface efficiency index (SEI), identifying the most promising TgDHFR inhibitors for further investigation. By leveraging AI and data augmentation approach, this study provides a powerful tool for pIC<sub>50</sub> predictions of TgDHFR inhibitors, which can be adapted to other systems.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747725000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Toxoplasmosis, caused by Toxoplasma gondii (T. gondii), is a serious global health concern, particularly in immunocompromised individuals. Inhibiting the enzyme TgDHFR is a promising strategy for developing treatments. This Artificial Intelligence (AI)-driven Quantitative Structure-Activity Relationship (QSAR) study applies deep neural networks (DNNs) to predict pIC50 values for potential inhibitors, using 2D and 3D molecular descriptors and fingerprints. To address training data limitations, we introduced a novel methodology combining targeted descriptor selection, Gaussian noise-based data augmentation, and an ensemble of DNNs. This approach significantly enhanced model performance, increasing the R² from 0.75 with the original dataset to 0.85. The model was further validated using two FDA-approved drugs for T. gondii treatment—pyrimethamine and trimethoprim—yielding relative errors of 3.35 % and 2.15 % in pIC50 predictions compared to experimental values. Finally, the model was applied to screen FDA-approved drugs after filtering out molecules that did not align with the characteristics of the training dataset. The predicted pIC50 values were further used to calculate ligand efficiency (LE), binding efficiency index (BEI), lipophilic ligand efficiency (LLE), and surface efficiency index (SEI), identifying the most promising TgDHFR inhibitors for further investigation. By leveraging AI and data augmentation approach, this study provides a powerful tool for pIC50 predictions of TgDHFR inhibitors, which can be adapted to other systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
AI-driven prediction of drug activity against Toxoplasma gondii: Data augmentation and deep neural networks for limited datasets Small-dataset-orientated data-driven screening for catalytic propane activation Machine learning for active sites prediction of quinoline derivatives Machine learning approaches for modelling of molecular polarizability in gold nanoclusters Evaluation of machine learning models for the accelerated prediction of density functional theory calculated 19F chemical shifts based on local atomic environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1