Application of Convolutional Neural Networks for Creation of Photoluminescent Carbon Nanosensor for Heavy Metals Detection

G. N. Chugreeva, O. E. Sarmanova, K. A. Laptinskiy, S. A. Burikov, T. A. Dolenko
{"title":"Application of Convolutional Neural Networks for Creation of Photoluminescent Carbon Nanosensor for Heavy Metals Detection","authors":"G. N. Chugreeva,&nbsp;O. E. Sarmanova,&nbsp;K. A. Laptinskiy,&nbsp;S. A. Burikov,&nbsp;T. A. Dolenko","doi":"10.3103/S1060992X23060036","DOIUrl":null,"url":null,"abstract":"<p>The paper presents results of the use of convolutional neural networks for the development of a multimodal photoluminescent nanosensor based on carbon dots (CD) for simultaneous measurement of the number of parameters of multicomponent liquid media. It is shown that using 2D convolutional neural networks allows to determine the concentrations of heavy metal cations Cu<sup>2+</sup>, Ni<sup>2+</sup>, Cr<sup>3+</sup>, <span>\\({\\text{NO}}_{3}^{ - }\\)</span> anions and pH value of aqueous solutions with a mean absolute error of 0.29, 0.96, 0.22, 1.82 and 0.05 mM, respectively. The resulting errors satisfy the needs of monitoring the composition of technological and industrial waters.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"32 2","pages":"S244 - S251"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X23060036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents results of the use of convolutional neural networks for the development of a multimodal photoluminescent nanosensor based on carbon dots (CD) for simultaneous measurement of the number of parameters of multicomponent liquid media. It is shown that using 2D convolutional neural networks allows to determine the concentrations of heavy metal cations Cu2+, Ni2+, Cr3+, \({\text{NO}}_{3}^{ - }\) anions and pH value of aqueous solutions with a mean absolute error of 0.29, 0.96, 0.22, 1.82 and 0.05 mM, respectively. The resulting errors satisfy the needs of monitoring the composition of technological and industrial waters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络在重金属检测光致发光碳纳米传感器中的应用
本文介绍了利用卷积神经网络开发基于碳点(CD)的多模态光致发光纳米传感器的结果,该传感器可同时测量多组分液体介质的参数数量。结果表明,利用二维卷积神经网络可以测定水溶液中重金属阳离子Cu2+、Ni2+、Cr3+、阴离子\({\text{NO}}_{3}^{ - }\)的浓度和pH值,平均绝对误差分别为0.29、0.96、0.22、1.82和0.05 mM。所得到的误差满足了工艺水和工业水成分监测的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
期刊最新文献
uSF: Learning Neural Semantic Field with Uncertainty Two Frequency-Division Demultiplexing Using Photonic Waveguides by the Presence of Two Geometric Defects Enhancement of Neural Network Performance with the Use of Two Novel Activation Functions: modExp and modExpm Automated Lightweight Descriptor Generation for Hyperspectral Image Analysis Accuracy and Performance Analysis of the 1/t Wang-Landau Algorithm in the Joint Density of States Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1